S'identifier

Molecular Orbital (MO) Theory

Vue d'ensemble

Source: Tamara M. Powers, Department of Chemistry, Texas A&M University

This protocol serves as a guide in the synthesis of two metal complexes featuring the ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf): M(dppf)Cl2, where M = Ni or Pd. While both of these transition metal complexes are 4-coordinate, they exhibit different geometries at the metal center. Using molecular orbital (MO) theory in conjunction with 1H NMR and Evans method, we will determine the geometry of these two compounds.

Procédure

NOTE: For safety precautions, the Schlenk line safety should be reviewed prior to conducting the experiments. Glassware should be inspected for star cracks before using. Care should be taken to ensure that O2 is not condensed in the Schlenk line trap if using liquid N2. At liquid N2 temperature, O2 condenses and is explosive in the presence of organic solvents. If it is suspected that O2 has been condensed or a blue liquid is observed in the cold trap, leave the trap

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Résultats

Pd(dppf)Cl2:
1H NMR (chloroform-d, 400 MHz, δ, ppm): 4.22 (alpha-H), 4.42 (beta-H), 7.89, 7.44, 7.54 (aromatic)3.

Ni(dppf)Cl2:
1H NMR (chloroform-d, 300 MHz, δ, ppm): 20.85, 10.04, 4.23, 3.98, 1.52, -3.31, -7.10.
Evans Method, looking at the 19F shift of trifluorotoluene:

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Applications et Résumé

This video demonstrated how MO theory can be used as a model of bonding in transition metal complexes. We synthesized two complexes with the general formula M(dppf)Cl2. When M = Ni, the 4-coordinate complex exhibits a tetrahedral geometry. Replacing the Ni atom with a larger transition metal (Pd), the molecule takes on square planar geometry.

Previously, we learned about the important role ferrocene plays in the field of organometallic chemistry. Substituted ferrocenes, including dp

Log in or to access full content. Learn more about your institution’s access to JoVE content here

References
  1. Corain, B., Longato, B., Favero, G. Heteropolymetallic Complexes of 1,1’-Bis(diphenylphosphino)ferrocene (dppf). III*. Comparative Physicochemical Properties of (dppf)MCl2 (M = Co, Ni, Pd, Pt, Zn, Cd, Hg). Inorg Chim Acta. 157, 259-266 (1989).
  2. Cullen, W. R., Einstein, F. W. B., Jones, T., Kim, T.-J. Structures of three hydrogenation catalysts [(P-P)Rh(NBD)]ClO4 and some comparative rate studies where (P-P) = (η5-R1R2PC5H4)(η5-R3R4PC5H4)Fe (R1 = R2 = R3 = R4 = Ph, R1 = R2 = Ph, R3 = R4 = CMe3, R1 = R3 = Ph, R2 = R4 = CMe3). Organometallics. 4(2), 346-351 (1983).
  3. Colacot, T. J., C.-Olivares, R., H.-Ortega, S. Synthesis, X-ray, spectroscopic and a preliminary Suzuki coupling screening studies of a complete series of dppfMX2 (M = Pt, Pd, X = Cl, Br, I). J Organomet Chem. 637-639, 691-697 (2001).
  4. Rudie, A. W., Lichtenberg, D. W., Katcher, M. L., Davison, A. Comparative Study of 1,1’-bis(diphenylphosphino)cobaltocinium hexafluorophosphate and 1,1’-bis(dipenylphosphino)ferrocene as Bidentate Ligands. Inorg Chem. 17(10), 2859-2863, 1978.
Tags
Molecular Orbital TheoryElectron BehaviorMain Group ComplexesTransition Metal ComplexesChemical BondsElectronic BehaviorLewis Dot StructuresVSEPR TheoryMO TheoryOrbitalsDiatomic MoleculesGeometryRelative EnergiesAtomic OrbitalsBonding Molecular OrbitalAntibonding Molecular OrbitalDiagramEnergy DifferenceOrbital OverlapGroup TheoryLigand Atomic Orbitals

Passer à...

0:05

Overview

1:06

Principles of MO Theory

2:56

Synthesis of Ni(dppf)Cl2

5:15

Synthesis of Pd(dppf)Cl2

6:31

Characterization of M(dppf)Cl2 (M = Ni, Pd) and Results

8:20

Applications

9:54

Summary

Vidéos de cette collection:

article

Now Playing

Molecular Orbital (MO) Theory

Inorganic Chemistry

35.1K Vues

article

Synthesis Of A Ti(III) Metallocene Using Schlenk Line Technique

Inorganic Chemistry

31.5K Vues

article

Glovebox and Impurity Sensors

Inorganic Chemistry

18.6K Vues

article

Purification of Ferrocene by Sublimation

Inorganic Chemistry

54.2K Vues

article

The Evans Method

Inorganic Chemistry

67.8K Vues

article

Single Crystal and Powder X-ray Diffraction

Inorganic Chemistry

103.7K Vues

article

Electron Paramagnetic Resonance (EPR) Spectroscopy

Inorganic Chemistry

25.3K Vues

article

Mössbauer Spectroscopy

Inorganic Chemistry

21.9K Vues

article

Lewis Acid-Base Interaction in Ph3P-BH3

Inorganic Chemistry

38.7K Vues

article

Structure Of Ferrocene

Inorganic Chemistry

79.0K Vues

article

Application of Group Theory to IR Spectroscopy

Inorganic Chemistry

44.9K Vues

article

Quadruply Metal-Metal Bonded Paddlewheels

Inorganic Chemistry

15.3K Vues

article

Dye-sensitized Solar Cells

Inorganic Chemistry

15.6K Vues

article

Synthesis of an Oxygen-Carrying Cobalt(II) Complex

Inorganic Chemistry

51.3K Vues

article

Photochemical Initiation Of Radical Polymerization Reactions

Inorganic Chemistry

16.7K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.