Accedi

Quenching and Boiling

Panoramica

Source: Alexander S Rattner, Sanjay Adhikari, and Mahdi Nabil; Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA

Controlled heating followed by rapid cooling is an important element of many materials processing applications. This heat-treating procedure can increase material hardness, which is important for cutting tools or surfaces in high wear environments. The rapid cooling stage is called quenching, and is often performed by immersing materials in a fluid bath (often water or oil). Quenching heat transfer can occur due to forced convection - when the action of rapidly moving material through coolant drives the heat transfer process, and due to free convection - when the reduced density of hot fluid near the material surface causes buoyancy-driven circulation and heat transfer. At high material temperatures, the coolant can boil, leading to increased heat transfer effectiveness. However, when extremely hot materials are quenched, they can be blanketed in relatively low thermal conductivity coolant vapor, leading to poor heat transfer.

In this experiment, quenching heat transfer will be measured for a heated copper cylinder, which is representative of small heat-treated parts. The transient sample temperature profile will be measured during quenching and compared with theoretical results for free convection heat transfer. Boiling phenomena will also be investigated qualitatively.

Procedura

NOTE: This experiment uses flame heating. Ensure that a fire extinguisher is on hand and that no flammable materials are near the experiment. Follow all standard precautions for fire safety.

1. Fabrication of sample for quenching (see photograph, Fig. 1)

  1. Cut a small length (~24 mm) of 9.53 mm diameter copper rod. Drill two small holes (1.6 mm diameter) about halfway into the rod near the two ends. These holes will be the thermocouple wells. As the holes and thermocouples are relati

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

Photographs of boiling at different initial sample temperatures (Ts,0) are presented in Fig. 2. At Ts,0 = 150°C vapor bubbles form and stay attached to the sample. At Ts,0 = 175°C bubbles detach and float into the water. At 200°C, more bubbles are generated, and further increases are observed at higher temperatures. Boiling crisis type events (e.g., whole sample being surrounded by persistent vapor) are no

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
QuenchingBoilingHeat TreatmentMaterial PropertiesHardnessDuctilityAnnealingCoolingThermal ConductivityFluid BathFree ConvectionForced ConvectionBubble FormationBoiling EnhancementBoiling CrisisHeat Transfer Rate

Vai a...

0:06

Overview

1:03

Principles of Quenching

3:41

Preparatory Steps

5:32

Conducting the Experiment

6:38

Data Analysis

9:32

Applications

10:25

Summary

Video da questa raccolta:

article

Now Playing

Quenching and Boiling

Mechanical Engineering

7.7K Visualizzazioni

article

Buoyancy and Drag on Immersed Bodies

Mechanical Engineering

29.9K Visualizzazioni

article

Stability of Floating Vessels

Mechanical Engineering

22.4K Visualizzazioni

article

Propulsion and Thrust

Mechanical Engineering

21.6K Visualizzazioni

article

Piping Networks and Pressure Losses

Mechanical Engineering

58.0K Visualizzazioni

article

Hydraulic Jumps

Mechanical Engineering

40.9K Visualizzazioni

article

Heat Exchanger Analysis

Mechanical Engineering

27.9K Visualizzazioni

article

Introduction to Refrigeration

Mechanical Engineering

24.6K Visualizzazioni

article

Hot Wire Anemometry

Mechanical Engineering

15.5K Visualizzazioni

article

Measuring Turbulent Flows

Mechanical Engineering

13.5K Visualizzazioni

article

Visualization of Flow Past a Bluff Body

Mechanical Engineering

11.8K Visualizzazioni

article

Jet Impinging on an Inclined Plate

Mechanical Engineering

10.7K Visualizzazioni

article

Conservation of Energy Approach to System Analysis

Mechanical Engineering

7.3K Visualizzazioni

article

Mass Conservation and Flow Rate Measurements

Mechanical Engineering

22.6K Visualizzazioni

article

Determination of Impingement Forces on a Flat Plate with the Control Volume Method

Mechanical Engineering

26.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati