A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Despite the crucial role of the choroid plexus in the brain, neuroimaging studies of this structure are scarce due to the lack of reliable automated segmentation tools. The present protocol aims to ensure gold-standard manual segmentation of the choroid plexus that can inform future neuroimaging studies.
The choroid plexus has been implicated in neurodevelopment and a range of brain disorders. Evidence demonstrates that the choroid plexus is critical for brain maturation, immune/ inflammatory regulation, and behavioral/cognitive functioning. However, current automated neuroimaging segmentation tools are poor at accurately and reliably segmenting the lateral ventricle choroid plexus. Furthermore, there is no existing tool that segments the choroid plexus located in the third and fourth ventricles of the brain. Thus, a protocol delineating how to segment the choroid plexus in the lateral, third, and fourth ventricle is needed to increase the reliability and replicability of studies examining the choroid plexus in neurodevelopmental and brain disorders. This protocol provides detailed steps to create separately labeled files in 3D Slicer for the choroid plexus based on DICOM or NIFTI images. The choroid plexus will be manually segmented using the axial, sagittal, and coronal planes of T1w images making sure to exclude voxels from gray or white matter structures bordering the ventricles. Windowing will be adjusted to assist in the localization of the choroid plexus and its anatomical boundaries. Methods for assessing accuracy and reliability will be demonstrated as part of this protocol. Gold standard segmentation of the choroid plexus using manual delineations can be used to develop better and more reliable automated segmentation tools that can be openly shared to elucidate changes in the choroid plexus across the lifespan and within various brain disorders.
Choroid plexus function
The choroid plexus is a highly vascularized structure in the brain consisting of fenestrated capillaries and a monolayer of choroid plexus epithelial cells1. The choroid plexus projects into the lateral, third, and fourth cerebral ventricles and produces cerebrospinal fluid (CSF), which plays an important role in neural patterning2 and brain physiology3,4. The choroid plexus secretes neurovascular substances, encompasses a stem-cell like repository, and acts as a physical barrier to impede the entrance of toxic metabolites, an enzymatic barrier to remove moieties that circumvent the physical barrier, and an immunological barrier to protect against foreign invaders5. The choroid plexus modulates neurogenesis6, synaptic plasticity7, inflammation8, circadian rhythm9,10, gut brain-axis11, and cognition12. Moreover, peripheral cytokines, stress, and infection (including SARS-CoV-2) can disrupt the blood-CSF barrier13,14,15,16. Thus, the choroid plexus-CSF system is integral for neurodevelopment, neurocircuit maturation, brain homeostasis, and repair17. Since immune, inflammatory, metabolic, and enzymatic alterations impact the brain, researchers are using neuroimaging tools to assess the role of the choroid plexus across the lifespan and in brain disorders18,19,20. However, limitations exist in commonly used automated tools for choroid plexus segmentation, such as FreeSurfer, which result in the choroid plexus being poorly segmented. Thus, there is a critical need for ground truth manual segmentation of the choroid plexus that can be used to develop an accurate automated tool for choroid plexus segmentation.
Choroid plexus in neurodevelopment and brain disorders
The role of the choroid plexus in brain disorders has long been neglected, mainly because it was regarded as a supporting player whose role was to cushion the brain and maintain a proper salt balance2,21. However, the choroid plexus has gained attention as a structure linked to brain disorders such as pain syndromes22, SARS-CoV-216,23,24, neurodevelopmental2, and brain disorders19, suggesting a transdiagnostic effect in the development of behavioral disorders. In neurodevelopmental disorders, choroid plexus cysts were associated with an increased risk of developmental delay, attention-deficit/hyperactivity disorder (ADHD), or autism spectrum disorder (ASD)25,26. Additionally, lateral ventricle choroid plexus volume was found to be increased in patients with ASD27. In brain disorders,choroid plexus abnormalities have been described since 1921 in psychotic disorders28,29. Previous studies have identified choroid plexus enlargement using FreeSurfer segmentation in a large sample of patients with psychotic disorders compared to both their first-degree relatives and controls19. These findings were replicated using manually segmented choroid plexus volume in a large sample of clinical high-risk for psychosis population and found that these patients had larger choroid plexus volume compared to healthy controls30. There are a growing number of studies demonstrating choroid plexus enlargement in complex regional pain syndrome22, stroke31, multiple sclerosis20,32, Alzheimer's33,34, and depression35, with some demonstrating a link between peripheral and brain immune/inflammatory activity. These neuroimaging studies are promising; however, poor lateral ventricle choroid plexus segmentation by FreeSurfer21 limits the trustworthiness of automated choroid plexus volume estimation. As a result, studies in multiple sclerosis20,32, depression35, Alzheimer's34, and early psychosis36 have begun manually segmenting the lateral ventricle choroid plexus, but there are no current guidelines for how to do this, nor is their guidance on segmenting the third and fourth ventricle choroid plexus.
Common segmentation tools exclude the choroid plexus
Brain segmentation pipelines such as FreeSurfer37,38,39, FMRIB Software Library (FSL)40, SLANT41, and FastSurfer (developed by the co-author Martin Reuter)42,43, accurately and reliably segment cortical and subcortical structures employing atlas-based (FSL), atlas- and surface-based (FreeSurfer), and deep learning segmentation paradigms (SLANT and FastSurfer). Weaknesses of some of these approaches include processing speed, limited generalization to different scanners, field strengths and voxel sizes37,44, and forced alignment of the label map in a standard atlas space. However, the capability to segment the choroid plexus and the compatibility with high-resolution MRI is only addressed by FreeSurfer and FastSurfer. The neural networks behind FastSurfer, are trained on FreeSurfer choroid plexus labels, so they inherit FreeSurfer's previously discussed reliability and coverage limitations, with the third and fourth ventricles being ignored21. Current limitations for high-resolution MRI also exist, but FreeSurfer's high-resolution stream45 and FastSurferVINN43 can be used to handle this issue.
Current choroid plexus segmentation tools
There is only one freely available segmentation tool for the choroid plexus, but segmentation accuracy is limited. Accurate choroid plexus segmentation can be impacted by a variety of factors, including (1) variability in choroid plexus location (spatially non-stationary) due to its location within the ventricles, (2) differences in voxel intensity, contrast, resolution (within-structure heterogeneity) due to cellular heterogeneity, dynamic choroid plexus function, pathological changes, or partial volume effects, (3) age- or pathology-related ventricular size differences impacting choroid plexus size, and (4) proximity to adjacent subcortical structures (hippocampus, amygdala, caudate, and cerebellum), which are also difficult to segment. Given these challenges, FreeSurfer segmentations often under or over-estimate, mislabel or ignore the choroid plexus.
Three recent publications addressed the gap of reliable choroid plexus segmentation with a Gaussian Mixture Model (GMM)46, an Axial-MLP47, and U-Net-based deep learning approaches48. Each model was trained and evaluated using private, manually labeled datasets of at most 150 subjects with a limited diversity of scanners, sites, demographics, and disorders. While these publications46,48,49 achieved significant improvements over FreeSurfer's choroid plexus segmentation - sometimes doubling the intersection of prediction and ground truth, neither method is (1) validated in high-resolution MRI, (2) has dedicated generalization and reliability analyses, (3) features large representative training and testing datasets, (4) specifically addresses or analyzes choroid plexus segmentation challenges such as partial volume effects, or (5) is publicly available as a ready-to-use tool. Thus, the current "gold standard" for choroid plexus segmentation is manual tracing, e.g., using 3D Slicer50 or ITK-SNAP51, which has not been previously described and has been a major challenge for researchers wishing to examine the role of the choroid plexus in their studies. 3D Slicer was chosen for manual segmentation due to the author's familiarity with the software and because it provides the user with various tools based on different approaches that can be combined to obtain the desired result. Other tools can be used, such as ITK-SNAP, which is primarily oriented on image segmentation, and once the tool is mastered, good results can be obtained by the user. Additionally, the authors have conducted a case-control study demonstrating the high accuracy and reliability of their manual segmentation technique using 3D Slicer30, and that specific methodology is described herein.
The present protocol was approved by the Institutional Review Board at Beth Israel Deaconess Medical Center. A healthy subject with a brain MRI scan that was free of artifacts or movement was used for this protocol demonstration, and written informed consent was obtained. A 3.0 T MRI scanner with a 32-channel head coil (see Table of Materials) was used to acquire 3D-T1 images with a 1 mm x 1 mm x 1.2 mm resolution. The MP-RAGE ASSET sequence with a 256 x 256 field of view, TR/TE/TI=7.38/3.06/400 ms, and an 11-degree flip angle was used.
1. Importing brain MRI to 3D Slicer
NOTE: 3D Slicer provides documentation related to its user interface.
2. Downloading DICOM from sample data in 3D Slicer
3. Quality control and adjusting the MRI image
4. Creating the manual segments of the choroid plexus
5. Viewing different slices and segmentations
6. Delineating lateral ventricle choroid plexus ROIs
NOTE: Image registration to a template is not necessary for manual segmentation.
7. Delineating third and fourth ventricle choroid plexus ROIs
NOTE: Higher resolution T1w images (such as 0.7 or 0.8 mm) and those obtained on a 7T MRI would provide a more accurate and reliable manual segmentation of the third and fourth ventricle choroid plexus. Segmenting the third and fourth ventricle choroid plexus is more difficult than the lateral ventricle choroid plexus as these regions can be much smaller and with fewer voxels to delineate.
8. Calculating the volumes of the choroid plexus
9. Saving the segments and volume results
10. Determining accuracy, performance, and agreement of the segmentation
NOTE: It is recommended to use the MONAI package (see Table of Materials), which describes the Dice Coefficient (DC) and the DeepMind average Surface Distance (avgSD). Details on DC and avgSD are described below. In order to compute these metrics, readers will need to know how to program (e.g., python, read images from disk, re-format the data to the appropriate input arrays for these functions). There is no user-friendly package that includes all these metrics.
The proposed method has undergone iterative refinement for the lateral ventricle choroid plexus, involving extensive testing on a cohort of 169 healthy controls and 340 patients with clinically high risk for psychosis30. Using the technique described above, the authors obtained high intra-rater accuracy and reliability with a DC = 0.89, avgHD = 3.27 mm3, and single-rater ICC = 0.9730, demonstrating the strength of the protocol described herein.
Handli...
Critical steps of the protocol
Three critical steps require special attention when implementing this protocol. First, checking the quality and contrast of MR images is key to ensuring accurate segmentation. If the quality of the image is too poor, or the contrast is too low or too high, it may lead to the inaccurate delineation of the choroid plexus. The contrast for the image can be adjusted by viewing the image's grayscale value or by calibrating the values to enhance the contrast between the...
The authors have no competing financial interests.
This work was supported by a National Institute of Mental Health Award R01 MH131586 (to P.L and M.R), R01 MH078113 (to M.K), and a Sydney R Baer Jr Foundation Grant (to P.L).
Name | Company | Catalog Number | Comments |
3D Slicer | 3D Slicer | https://www.slicer.org/ | A free, open source software for visualization, processing, segmentation, registration, and analysis of medical, biomedical, and other 3D images and meshes; and planning and navigating image-guided procedures. |
FreeSurfer | FreeSurfer | https://surfer.nmr.mgh.harvard.edu/ | An open source neuroimaging toolkit for processing, analyzing, and visualizing human brain MR images |
ITK-SNAP | ITK-SNAP | http://www.itksnap.org/pmwiki/pmwiki.php | A free, open-source, multi-platform software application used to segment structures in 3D and 4D biomedical images.Β |
Monai Package | Monai Consortium | https://docs.monai.io/en/stable/metrics.html | Use for Dice Coefficient and DeepMind average Surface Distance.Β |
MRI scanner | GE | Discovery MR750Β | |
Psych Package | R-Project | https://cran.r-project.org/web/packages/psych/index.html | A general purpose toolbox developed originally for personality, psychometric theory and experimental psychology. |
R Software | R-Project | https://www.r-project.org/ | R is a free software environment for statistical computing and graphics.Β |
RStudio | Posit | https://posit.co/ | An RStudio integrated development environment (IDE) is a set of tools built to help you be more productive with R and Python.Β |
Windows or Apple OS Desktop or Laptop | Any company | n/a | Needed for running the software used in this protocol.Β |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright Β© 2025 MyJoVE Corporation. All rights reserved