A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for the high-efficiency production of transgenic soybean hairy roots.
Soybean (Glycine max) is a valuable crop in agriculture that has thousands of industrial uses. Soybean roots are the primary site of interaction with soil-borne microbes that form symbiosis to fix nitrogen and pathogens, which makes research involving soybean root genetics of prime importance to improve its agricultural production. The genetic transformation of soybean hairy roots (HRs) is mediated by the Agrobacterium rhizogenes strain NCPPB2659 (K599) and is an efficient tool for studying gene function in soybean roots, taking only 2 months from start to finish. Here, we provide a detailed protocol that outlines the method for overexpressing and silencing a gene of interest in soybean HRs. This methodology includes soybean seed sterilization, infection of cotyledons with K599, and the selection and harvesting of genetically transformed HRs for RNA isolation and, if warranted, metabolite analyses. The throughput of the approach is sufficient to simultaneously study several genes or networks and could determine the optimal engineering strategies prior to committing to long-term stable transformation approaches.
Soybean (Glycine max) is among the most valuable crops in agriculture. It has thousands of commercial and industrial uses, such as food, animal feed, oil, and as a source of raw materials for manufacturing1. Its ability to form a symbiotic relationship with nitrogen-fixing soil microorganisms, namely rhizobia, further elevates the importance of studying soybean genetics2. For instance, fine-tuning nitrogen fixation properties in soybean roots can lead to the reduction of carbon emissions and greatly reduce requirements for nitrogen fertilizer3. Thus, understanding the genetics that controls aspects of soybean root biology, in particular, has wide applications in agriculture and industry. Considering these benefits, it is important to have a reliable protocol to analyze the function of soybean genes.
Agrobacterium tumefaciens is perhaps the most commonly used tool for plant genetic transformation as it has the capability of integrating transfer DNA (T-DNA) into the nuclear genome of many plant species. When Agrobacterium infects a plant, it transfers the tumor-inducing (Ti) plasmid into the host chromosome, leading to the formation of a tumor at the infection site. The Agrobacterium-mediated transformation has been widely used for decades for gene functional analysis and in order to modify crop traits4. Although any gene of interest can be readily transferred into host plant cells through A. tumefaciens-mediated transformation, this method has several drawbacks; it is time-consuming, expensive, and requires extensive expertise for many plant species, such as soybean. Although a few varieties of soybean can be transformed by the cotyledonary node approach using A. tumefaciens, the inefficiency of this approach necessitates the need for an alternative genetic transformation technology that is rapid and highly efficient4,5. Even a non-expert can use this Agrobacterium rhizogenes-mediated hairy root (HR) transformation method to overcome these disadvantages.
HR transformation is a relatively fast tool, not only for analyzing gene function, but also for biotechnological applications, such as the production of specialized metabolites and fine chemicals, and complex bioactive glycoproteins6. The production of soybean HRs does not require extensive expertise, as they can be generated by wounding the surfaces of cotyledons, followed by inoculation with Agrobacterium rhizogenes7. A. rhizogenes expresses virulence (Vir) genes encoded by its Ti plasmid that transfer, carry, and integrate its T-DNA segment into the genome of plant cells while simultaneously stimulating ectopic root growth8.
Compared to other soybean geneΒ expression systems, such as biolistics or A. tumefaciens-based transformation of tissue, cell, and organ culture, the HR expression system exhibits several advantages. Firstly, HRs are genetically stable and produced quickly on hormone-free media1,9,10. Additionally, HRs can produce specialized metabolites in amounts equivalent to or greater than native roots11,12. These advantages make HRs a desirable biotechnological tool for plant species that are incompatible with A. tumefaciens or that require special tissue culture conditions to form compatible tissues. The HR method is an efficient approach for analyzing protein-protein interactions, protein subcellular localization, recombinant protein production, phytoremediation, mutagenesis, and genome wide effects using RNA sequencing13,14,15. It can also be used to study the production of specialized metabolites that have value in the industry, including glyceollins, which medicate soybean's defense against the important microbial pathogen Phytophthora sojae and have impressive anticancer and neuroprotective activities in humans16,17.
This report demonstrates an easy, efficient protocol to produce soybean HRs. Compared to previous HR transformation methods, this protocol provides a significant (33%-50%) improvement in the rate of HR formation by prescreening A. rhizogenes transformants for the presence of the Ti plasmid prior to inoculating soybean cotyledons. We demonstrate the applicability of this protocol by transforming several binary vectors that overexpress or silence soybean transcription factor genes.
NOTE: It is recommended that all of the proceeding steps be conducted under sterile conditions.
1. Soybean seed sterilization
2. Infection of cotyledons with K599
NOTE: Use pGWB series vectors, as their dual selection ensures genomic integration of the entire T-DNA cassette. Electroporation was used to transform a binary vector harboring the gene of interest into A. rhizogenes pRi265918.
3. Selection and harvesting of HRs
The representative results are from the published data19,20. The colony PCR (cPCR) results of the transformed K599 Agrobacterium are shown in Figure 1. As indicated by the positive colonies in Figure 1, the gene of interest was detected by cPCR (Figure 1A). However, one-third to one-half of the colonies were negative for the VirD2 gene screening (
During the past decade, the soybean HR method has been developed as a powerful tool to study genes involved in nitrogen fixation22,23, biotic and abiotic stress tolerance24,25, and metabolite biosynthetic pathways26,27. The knowledge of how plants produce metabolites has a plethora of benefits for agricultural production and the pharmaceutical ind...
The authors have nothing to disclose.
This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant number RGPIN-2020-06111 and by a generous donation from Brad Lace. We would like to thank Wayne Parrott (University of Georgia) for the K599 Agrobacterium and the preliminary protocol, and the Nakagawa & Hachiya lab (Shimane University) for the pGWB2, pGWB6, and pANDA35HK empty vectors.
Name | Company | Catalog Number | Comments |
Acetosyringone | Cayman | 23224 | |
Bleach | lavo | 21124 | |
DMSO | Fisher bioreagents | 195679 | |
Gelzan | Phytotech | HYY3251089A | |
Hygromycin | Phytotech | HHA0397050B | |
Isopropyl alcohol | Fisher chemical | 206462 | |
Kanamycin | Phytotech | SQS0378007G | |
LB powder | Fisher bioreagents | 200318 | |
MS powder | Caisson labs | 2210001 | |
Na2HPO4 | Fisher bioreagents | 194171 | |
NaCl | Fisher chemical | 192946 | |
Petri dishes | Fisherbrand | 08-757-11 | 100 mm x 25 mm |
Phosphinothricin | Cedarlane | P034-250MG | |
REDExtract-N-Amp PCR Kit | Sigma | R4775 | |
Sucrose | Bioshop | 2D76475 | |
Timentin | Caisson labs | 12222002 | |
Vitamins | Caisson labs | 2211010 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright Β© 2025 MyJoVE Corporation. All rights reserved