A subscription to JoVE is required to view this content. Sign in or start your free trial.
The presented protocol describes sample homogenization with a laboratory mixer, acid digestion of food samples using a mixture of 68 wt% HNO3 and 30 wt% H2O2 via microwave-assisted wet acid digestion, and multi-element determination performed with inductively coupled plasma mass spectrometry.
Sample preparation is crucial for elemental determination, and various techniques are available, one of which involves homogenization followed by acid digestion. Special care is required during sample handling in the preparation stage to eliminate or minimize potential contamination and analyte loss. Homogenization is a process that simultaneously reduces particle size and uniformly distributes sample components. Following homogenization, the sample undergoes acid digestion, wherein it is digested with acids and auxiliary chemicals at elevated temperatures, transforming solid samples into a liquid state. In this process, metals in the original sample react with acids to form water-soluble salts. Samples prepared through acid digestion are suitable for elemental analysis using techniques such as inductively coupled plasma mass spectrometry, inductively coupled plasma optical emission spectroscopy, atomic absorption spectroscopy, electrochemical methods, and other analytical techniques. This work details the preparation of food samples for multi-element determination using inductively coupled plasma mass spectrometry. The step-by-step procedure involves the homogenization process using a laboratory-sized mixer with ceramic blades, followed by acid digestion in closed vessels using microwave-assisted wet acid digestion. A mixture of 5.0 mL of 68 wt% HNO3 and 1.0 mL of 30 wt% H2O2 serves as an auxiliary reagent. This guide provides an explanation of the processes involved in both stages.
Elemental analysis is an analytical process for determining the elemental composition of various samples. It can be used to control the intake of metals into human bodies (especially heavy metals1) since their high concentrations may cause unwanted health problems. Heavy metals are also one of the main environmental contaminants, therefore, control of their presence in the environment is necessary2. Moreover, elemental analysis can be employed to determine the geographical origin of food products3 and to control the quality of food and water resources4. In addition, it is used for the determination of micro- and macronutrients in soils5 and to gain insights into geological processes throughout history by examining the chemical composition of minerals and sediments6. Studies have also been made to determine the presence of rare metals in electrical and electronic waste for further metal regeneration7, to evaluate the success of drug treatments8, and to verify the elemental composition of metal implants9.
Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectroscopy (ICP-OES) are commonly used techniques for the elemental analysis of various samples10. They allow simultaneous determination of multiple elements with limits of detection (LOD) and limits of quantification (LOQ) as low as ng/L. In general, ICP-MS has lower LOD values11 and a wider linear concentration range compared to ICP-OES12. Other techniques to determine elemental composition are microwave-induced plasma optical emission spectrometry13 and several variants of atomic absorption spectroscopy (AAS), including flame atomic absorption spectroscopy, electrothermal atomic absorption spectroscopy2, cold vapor atomic absorption spectroscopy, and hydride generation atomic absorption spectroscopy14. Furthermore, elemental determination with low LOD and LOQ is possible with different electroanalytical methods, especially with anodic stripping voltammetry15,16. Of course, there are other methods to determine the elemental composition of samples, but they are not as frequently employed as the above-mentioned methods.
Direct elemental determination of solid samples is feasible using laser-induced breakdown spectroscopy and X-ray fluorescence17. However, for elemental determination with ICP-MS, ICP-OES, and AAS it is necessary to convert solid samples into a liquid state. For this purpose, acid digestion is performed using acids and auxiliary reagents (in most cases H2O2). Acid digestion is carried out at elevated temperature and pressure, converting the organic part of the sample into gaseous products and converting the metal elements into water-soluble salts, thus dissolving them in the solution18.
There are two main types of acid digestion, open vessel digestion and closed vessel digestion. Open vessel digestion is cost-effective14 but has limitations, such as the maximum digestion temperature, which coincides with the boiling temperature of acids at atmospheric pressure. The sample can be heated on hot plates, heating blocks, water baths, sands baths2, and by microwaves19. By heating the sample in that manner, much of the generated heat is lost to the surroundings20, which extends the digestion time14. Other disadvantages of open vessel digestion include greater chemical consumption, the greater possibility of contamination from the surrounding environment, and possible loss of analytes due to the formation of volatile components and their evaporation from the reaction mixture21.
Closed vessel systems are more convenient for the digestion of organic and inorganic samples compared to open vessel systems. Closed vessel systems utilize a variety of energy sources to heat the samples, such as conduction heating and microwaves22. Digestion methods which use microwaves include microwave-induced combustion23, single reaction chamber systems24, and commonly used microwave-assisted wet acid digestion (MAWD)25,26. MAWD allows digestion at higher operating temperatures, ranging between 220 °C and 260 °C and maximum pressures up to 200 bar, depending on the instrument's working conditions27.
The efficiency and rate of MAWD depend on several factors, including the chemical composition of the samples, the maximum temperature, the temperature gradient, the pressure in the reaction vessel, the amount of acids added, and the concentration of acids used28. In MAWD, complete acid digestion can be achieved in a few minutes due to the elevated reaction conditions compared to longer-lasting digestions in open vessel systems. Lower volumes and concentrations of acids are required in MAWD, which is in line with current green chemistry guidelines29. In MAWD, a smaller amount of sample compared to open vessel digestion is needed to perform acid digestion, usually up to 500 mg of sample is sufficient30,31,32. Larger sample quantities may be digested, but they require a larger amount of chemicals.
Since the instrument for MAWD automatically controls the reaction conditions and the person does not come in direct contact with the chemicals during heating, MAWD is safer to operate than open vessel digestions. However, the person should always proceed with caution when adding chemicals to the reaction vessels to prevent them from coming into contact with the body and causing harm. Reaction vessels also need to be opened slowly as the pressure is built up inside them during acid digestion.
Although acid digestion is a useful technique for preparing samples for elemental determination, the person performing it should be aware of its possible limitations. Acid digestion may not be suitable for all samples, especially those with complex matrices and those that are highly reactive or could react explosively. Therefore, sample composition should always be evaluated to select the appropriate chemicals and reaction conditions for complete digestion that dissolves all desired elements in the solution. Other concerns that the user must consider, and address are impurities and loss of analytes at every step of sample preparation. Acid digestion must always be performed according to specific rules or using protocols.
The protocol described below provides instructions for the homogenization of food samples in a laboratory-sized mixer, a procedure for cleaning the mixer's components, properly weighing the sample, adding chemicals, performing acid digestion by MAWD, cleaning the reaction vessels after the digestion is complete, preparing the samples for elemental determination, and performing a quantitative multi-element determination with ICP-MS. By following the instructions given below, one should be able to prepare a sample suitable for elemental determination and perform the measurements of digested samples.
1. Sample homogenization
2. Mixer cleaning
3. Sample weighing
4. Acid addition
5. Microwave-assisted wet acid digestion
6. Reaction vessel cleaning
7. Multi-element determination with ICP-MS
Homogenization
All samples were dried to a constant mass with the laboratory dryer to eliminate any moisture. Transferring the sample to a desiccator allowed it to cool to room temperature without binding moisture from the surrounding environment. The food samples were then homogenized using the laboratory mixer to obtain a fine powder. The resulting homogenized particles were uniform in size and evenly distributed, ensuring that subsamples (samples drawn from a larger sample) used for acid digesti...
Homogenization
To ensure reproducible results in elemental determination, it is necessary to homogenize samples before acid digestion due to their complex and inhomogeneous structure and composition. Homogenization aims to eliminate constitutional and distributional heterogeneity. Mixing the sample minimizes distributional heterogeneity by evenly redistributing components throughout the sample. Similarly, by bringing the particle size down to a uniform size, constitutional heterogeneity is reduced<...
The authors have nothing to disclose.
The authors acknowledge the financial support of the Slovenian Research Agency (Grant Nos. P2-0414, P2-0118, J1-2470, NK-0001, and J1-4416).
Name | Company | Catalog Number | Comments |
Ar gas | Messer | 7440-37-1 | Ar 5.0 gas (purity 99.999%). |
AS-10 Autosampler system | Shimadzu | Autosampler connected to the ICP-MS, containing 68 ports for samples. | |
Automatic pipettes | Sartorius | 200 µL, 1 mL, and 5 mL automatic pipettes. | |
Balance XSE104 | Mettler Toledo, Columbus, Ohio, USA | Analytical balance scale with a maximum weighing mass of 120 g. | |
Ceramic knife | Ceramic knife used for cutting fresh food samples. | ||
Dessicator | Glass desiccator with lumps of silica gel. | ||
ETHOS LEAN | Milestone, Sorisole, Italy | Microwave system for wet acid digestion in closed 100 mL vessels made of TFM-PTFE. | |
Fume hood | Laboratory fume hood with adjustable air flow. | ||
Glass beakers RASOTHERM | CarlRoth GmbH + Co.KG | 50 mL, 250 mL glass beakers | |
Glass funnels | Small glass funnels fitting into the neck of volumetric flasks. | ||
He gas | Messer | 7440-59-7 | He 5.0 gas (purity 99.999%). |
Hydrogen peroxide | ThermoFisher Scientific | 7722-84-1 | Hxdrogen peroxide 100 volumes 30 wt.% solution. Laboratory reagent grade. |
ICP multi-element standard solution VIII | Supelco | 109492 | 100 mg/L ICP multi-element standard solution containing 24 elements (Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, Li, Mg, Mn, Na, Ni, Pb, Se, Sr, Te, Tl, Zn) in 2 % dilute nitric acid. |
ICPMS 2030 | Shimadzu | Inductively coupled plasma mass spectrometry system for multi-element analysis of digested samples. | |
ICP-MS Tuning Solution A | CarlRoth GmbH + Co.KG | 250 mL tuning solution containing 6 elements (Be, Bi, Ce, Co, In, Mn) in 1 % nitric acid. | |
KIMTECH Purple Nitrile gloves | Kimberly-Clark GmbH | Disposable Purple Nitrile gloves (S, M or L). | |
Laboratory coat | Any available supplier | / | |
Mixer B-400 | BÜCHI Labortechnik AG, Flawil, Switzerland | Laboratory mixer with ceramic blades. | |
Nitric acid | ThermoFisher Scientific | 7697-37-2 | Nitric acid, trace analysis grade, 68 wt%, density 1.42, Primar Plus, For Trace Metal Analysis. |
Plastic centrifuge tubes | Isolab | 50 mL plastic centrifuge tubes with screw caps, single use. | |
Plastic syringes Injekt | B. Braun | 2 pice, single use 20 mL syringes. | |
Plastic tubes for autosampler | Shimadzu | 046-00147-04 | Plastic tubes for autosampler, 15 mL capacity, 16 mm diameter, 100 mm length. |
Plastic waste containers | Plastic containers for the removal of chemicals after the cleaning procedure of reaction vessels. | ||
Protective googles | / | ||
Samples (broccoli, sausage, noodles, zucchini, mushrooms) | Fresh samples, which were dried to a constant weight and homogenized during the procedure. The samples were purchased from a local shop. | ||
Spatula | Plastic spatula. | ||
Sterilizator Instrumentaria ST 01/02 | Instrumentaria | Dryer with adjustable temperature. | |
Syringe filters | CHROMAFIL Xtra | 729212 | Syringe filters with polypropylene housing and polyamide hydrophilic membrane. Membrane diameter 25 mm, membrane pore size 0.2 µm. |
Ultrapure water | ELGA Labwater, Veolia Water Technologies. | Ultrapure water with a resistivity of 18.2 MΩcm, obtained with laboratory water purification system. | |
Volumetric flasks | 25 mL glass volumetric flasks. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved