A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here we present a high-resolution respirometry protocol to analyze bioenergetics in PINK1B9-null mutant fruit flies. The method uses the Substrate-Uncoupler-Inhibitor-Titration (SUIT) protocol.
Neurodegenerative diseases, including Parkinson's Disease (PD), and cellular disturbances such as cancer are some of the disorders that disrupt energy metabolism with impairment of mitochondrial functions. Mitochondria are organelles that control both energy metabolism and cellular processes involved in cell survival and death. For this reason, approaches to evaluate mitochondrial function can offer important insights into cellular conditions in pathological and physiological processes. In this regard, high-resolution respirometry (HRR) protocols allow evaluation of the whole mitochondrial respiratory chain function or the activity of specific mitochondrial complexes. Furthermore, studying mitochondrial physiology and bioenergetics requires genetically and experimentally tractable models such as Drosophila melanogaster.
This model presents several advantages, such as its similarity to human physiology, its rapid life cycle, easy maintenance, cost-effectiveness, high throughput capabilities, and a minimized number of ethical concerns. These attributes collectively establish it as an invaluable tool for dissecting complex cellular processes. The present work explains how to analyze mitochondrial function using the Drosophila melanogaster PINK1B9-null mutant. The pink1 gene is responsible for encoding PTEN-induced putative kinase 1, through a process recognized as mitophagy, which is crucial for the removal of dysfunctional mitochondria from the mitochondrial network. Mutations in this gene have been associated with an autosomal recessive early-onset familial form of PD. This model can be used to study mitochondrial dysfunction involved in the pathophysiology of PD.
Mitochondria are cellular organelles that control important functions, including apoptotic regulation, calcium homeostasis, and participation in biosynthetic pathways. By possessing autonomous genetic material, they are capable of contributing to cellular maintenance and repair processes. Their structure houses the electron transport chain and oxidative phosphorylation, both crucial for cellular energy1,2,3. In particular, energy control is achieved through adenosine triphosphate (ATP) production via oxidative phosphorylation (OXPHOS)2. Disruption of energy metabolism with impairment of mitochondrial functions occurs both in cell survival and death4,5, frequently associated with a wide range of human pathologies, such as cancer, and neurodegenerative diseases such as Parkinson's Disease (PD)3,6.
PD is a chronic, progressive, and neurological disorder. The primary cause of this disease is the death of brain cells, especially in the substantia nigra, which are responsible for the production of the neurotransmitter dopamine, which controls movement6,7,8. The earliest observation that linked Parkinsonism to mitochondrial dysfunction was made in 1988, in experimental models using toxins that inhibit the respiratory chain Complex I9.
Currently, there are several methods to evaluate mitochondrial dysfunction10,11,12,13; however, compared to conventional approaches, high-resolution respirometry (HRR) presents superior sensitivity and advantages13,14. For example, HRR protocols allow the evaluation of the whole mitochondrial respiratory chain function or the activity of specific mitochondrial complexes14,15. Mitochondrial dysfunctions can be assessed in intact cells, isolated mitochondria, or even ex vivo10,11,13,14.
Mitochondrial dysfunctions are closely associated with many pathological and physiological processes. It is therefore important to study mitochondrial physiology and bioenergetics using genetically and experimentally tractable model systems. In this regard, research on Drosophila melanogaster, the fruit fly, has several advantages. This model shares fundamental cellular characteristics and processes with humans, including the use of DNA as genetic material, common organelles, and conserved molecular pathways involved in development, immunity, and cell signaling. In addition, fruit flies have a rapid life cycle, easy maintenance, low cost, high throughput, and fewer ethical concerns, thus constituting an invaluable tool for dissecting complex cellular processes16,17,18,19,20.
Furthermore, a homolog of the PTEN-induced putative kinase 1 (pink1) gene is expressed in D. melanogaster. It plays a crucial role in the removal of damaged mitochondria through the process of mitophagy8. In humans, mutations in this gene predispose individuals to an autosomal recessive familial form of PD associated with mitochondrial dysfunction8,21,22,23. Consequently, the fruit fly is a powerful animal model for studies on the pathophysiology of PD and screening of drug candidates focusing on mitochondrial dysfunction and bioenergetics. Therefore, the present work explains how to analyze mitochondrial function in a model of PD from D. melanogaster using the HRR technique in the OROBOROS with the Substrate-Uncoupler-Inhibitor-Titration (SUIT) protocol.
We used the strains w1118 (white) and w[*] Pink1[B9]/FM7i, P{w[+mC]=ActGFP}JMR3 (referred to as Pink1B9) (FlyBase ID: FBgn0029891) from the Bloomington Drosophila stock center (ID number: 34749). In this study, male D. melanogaster PINK1B9-null mutants are compared with male D. melanogaster from the w1118 strain, which is used as a control group (genetic background). Other parameters must be analyzed concomitantly with the respirometry experiments to ensure that the flies have the correct genotype (Pink1B9/Y), such as thorax deformities and locomotion problems, which are well described for pink1B9 mutant flies24,25,26.
1. Animals and housing
2. Sample preparation
3. High-resolution respirometry calibration of polarographic oxygen sensors
NOTE: The OROBOROS chambers have a total volume of approximately 2 mL. Calibration is required to ensure the oxygen flux is close to 0 pmol to start the assay.
4. SUIT protocol
5. Data analysis
Here, we that O2 flux in OXPHOS CI (P = 0.0341) and OXPHOS CI&II (P = 0.0392) states is reduced in PINK1B9 null flies when compared to control flies (Figure 4). This result was also observed in previous findings from our group29,30.
CI and CII are key components of the electron transport system (ETS), in which CI is responsible for the transfer of el...
HRR is a powerful technique for studying mitochondrial respiration and energy metabolism in D. melanogaster and other organisms. It provides a detailed and quantitative assessment of mitochondrial function, allowing researchers to gain insights into the bioenergetics of the cells. The protocol presented here describes the evaluation of mitochondrial respiratory chain function and the activity of specific mitochondrial complexes using the SUIT protocol in D. melanogaster. The SUIT protocol involves syste...
The authors declare no competing interests.
The authors acknowledge the Brazilian agency Coordenação de Aperfeiçoamento de Pesquisa Pessoal de Nível Superior (CAPES EPIDEMIAS 09 #88887.505377/2020). P.M. (#88887.512821/2020-00) and T.D. (#88887.512883/2020-00) are research fellowship recipients.
Name | Company | Catalog Number | Comments |
ADP | Sigma-Aldrich | A5285 | Adenosine 5′-diphosphate sodium sal (CAS number 72696-48-1); ≥95%; molecular weight = 501.31 g/mol. |
Ágar | Kasv | K25-1800 | For bacteriologal use |
Antimycin-A | Sigma-Aldrich | A8674 | Antimycin A from Streptomyces sp. (CAS number 1397-94-0); molecular weight 540 g/mol; |
Bovine Serum Albumin (BSA) | Sigma-Aldrich | A7030 | Bovine Serum Albumin (CAS number 9048-46-8); pH 7,0 ≥ 98% |
Datlab software | Oroboros Instruments, Innsbruck, Austria | 20700 | Software for data acquisition and analysis |
Digitonin | Sigma-Aldrich | D 5628 | CAS number 11024-24-1 |
Distilled water | |||
Drosophila melanogaster strain w[*] Pink1[B9]/FM7i, P{w[+mC]=ActGFP}JMR3 | Obtained from Bloomington Drosophila stock center | ||
Drosophila melanogaster strain w1118 | Obtained from the Federal University of Santa Maria | ||
EGTA | Sigma-Aldrich | E8145 | Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (CAS number 13638-13-3); ≥97%; molecular weight =468.28 g/mol |
FCCP | Sigma-Aldrich | C2920 | Carbonyl cyanide 4- (trifluoromethoxy)phenylhydrazone (CAS number 370-86-5); ≥98% (TLC), powder |
GraphPad Prism version 8.0.1. | Software for data acquisition and analysis | ||
Hepes | Sigma-Aldrich | H4034 | 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (CAS number 7365-45-9); ≥99,5% (titration), cell cultured tested; molecular weight = 238.30 g/mol |
High-resolution respirometer Oxygraph O2K | Oroboros Instruments, Innsbruck, Austria | 10022-02 | Startup O2K respirometer kit |
KH2PO4 | Sigma-Aldrich | P5379 | Monopotassium phosphate (CAS number 7778-77-0); Reagente Plus, molecular weigt = 136.09 g/mol |
KOH | Sigma-Aldrich | 211473 | Potassium hydroxide (CAS number 1310-58-3); ACS reagent, ≥85%, pellets |
Malate | Sigma-Aldrich | M1296 | Malonic acid (CAS number 141-82-2); 99%, molecular weight = 104.06 g/mol). A solution is pH adjusted to approximately 7.0. |
Malic acid | Sigma-Aldrich | M1000 | (S)-(−)-2-Hydroxysuccinic acid (CAS number 97-67-6); ≥95% ; molecular weight = 134.09 g/mol |
MES | Sigma-Aldrich | M3671 | 2-(N-Morpholino)ethanesulfonic acid (CAS number 4432-31-9); ≥99% (titration); molecular weight = 195.24 g/mol |
MgCl2 | Sigma-Aldrich | M8266 | Magnesium chloride (CAS number 7786-30-3); anhydrous, ≥98%, molecular weight = 95.21 g/mol |
Microcentrifuge tubes | Eppendorf | ||
O2K-Titration Set | Oroboros Instruments, Innsbruck, Austria | 20820-03 | Hamilton syringes with different volumes |
Oligomycin | Sigma-Aldrich | O 4876 | Oligomycin from Streptomyces diastatochromogenes (CAS number 1404-19-9); ≥90% total oligomycins basis (HPLC) |
Pistil to homogenization | |||
Proline | Sigma-Aldrich | P0380 | L-Proline (CAS number 147-85-3); powder; 99%; molecular weight = 115.13 g/mol |
Pyruvate | Sigma-Aldrich | P2256 | Sodium pyruvate (CAS number 113-24-6), ≥99%; molecular weight = 110.04 g/mol |
Rotenone | Sigma-Aldrich | R8875 | Rotetone (CAS number 83-79-4); ≥95%, molecular weight 394.42 g/ mol |
Succinate | Sigma-Aldrich | S 2378 | Sodium succinate dibasic hexahydrate (CAS number 6106-21-4); ≥99% |
Sucrose | Merck | 107,651,000 | Sucrose for microbiology use (CAS number 57-50-1) |
Taurine | Sigma-Aldrich | T0625 | CAS number 107-35-7 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved