A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
We describe a detailed protocol for the preparation of post-cryopreserved hESC-derived photoreceptor progenitor cells and the sub-retinal delivery of these cells in rd10 mice.
Regeneration of photoreceptor cells using human pluripotent stem cells is a promising therapy for the treatment of both hereditary and aging retinal diseases at advanced stages. We have shown human recombinant retina-specific laminin isoform matrix is able to support the differentiation of human embryonic stem cells (hESCs) to photoreceptor progenitors. In addition, sub-retinal injection of these cells has also shown partial restoration in the rd10 rodent and rabbit models. Sub-retinal injection is known to be an established method that has been used to deliver pharmaceutical compounds to the photoreceptor cells and retinal pigmented epithelial (RPE) layer of the eye due to its proximity to the target space. It has also been used to deliver adeno-associated viral vectors into the sub-retinal space to treat retinal diseases. The sub-retinal delivery of pharmaceutical compounds and cells in the murine model is challenging due to the constraint in the size of the murine eyeball. This protocol describes the detailed procedure for the preparation of hESC-derived photoreceptor progenitor cells for injection and the sub-retinal delivery technique of these cells in genetic retinitis pigmentosa mutant, rd10 mice. This approach allows cell therapy to the targeted area, in particular the outer nuclear layer of the retina, where diseases leading to photoreceptor degeneration occur.
Inherited retinal diseases and age-related macular degeneration lead to photoreceptor cell loss and eventual blindness. The retinal photoreceptor is the outer segment layer of the retina comprised of specialized cells responsible for phototransduction (i.e., conversion of light to neuronal signals). The rod and cone photoreceptor cells are adjacent to the retinal pigmented layer (RPE)1. Photoreceptor cell replacement therapy to compensate the cell loss has been an emerging and developing therapeutic approach. Embryonic stem cells (ESCs)2,3,4, induced pluripotent stem cells (iPSCs)-derived RPE cells, and retinal progenitor cells (RPCs)4,5,6,7,8 were used to restore the damaged photoreceptor cells. Sub-retinal space, a confined space between the retina and the RPE, is an attractive location to deposit these cells to replace damaged photoreceptor cells, RPE, and Mueller cells due to its vicinity9,10,11.
Gene and cell therapies have been utilizing the sub-retinal space for regenerative medicine for various retinal diseases in pre-clinical studies. This includes the delivery of functional copies of the gene or gene editing tools in the form of either anti-sense oligonucleotide therapy12,13 or CRISPR/Cas9 or base editing via adeno-associated virus (AAV) based strategy14,15,16, implantation of materials (e.g., RPE sheet, retinal prosthetics17,18,19) and differentiated stem cell-derived retinal organoids20,21,22 to treat retinal and RPE-related diseases. Clinical trials using hESC-RPE31 in the sub-retinal space to treat RPE65-associated Leber congenital amaurosis (LCA)23,24, CNGA3-linked achromatopsia25, MERTK-associated retinitis pigmentosa26, choroideremia27,28,29,30 have been proven to be an effective approach. Direct injection of cells to the vicinity of the damaged area greatly improves the chance of cell settlement at the appropriate region, synaptic integration, and eventual visual improvement.
Even though sub-retinal injection in human and large-eyed models (i.e., pig32,33,34,35, rabbit36,37,38,39,40, and non-human primate41,42,43) has been established, such injection in the murine model is still challenging due to the constrain of the eyeball size and enormous lens occupying the mouse eye44,45,46. However, genetically modified models are only readily available in small animals and not in large animals (i.e., rabbits and non-human primates), therefore sub-retinal injection in mice draws attention to investigate novel therapeutic approaches in retinal genetic disorders. Three major approaches are being used to deliver cells or AAVs into the sub-retinal space, namely the trans-corneal route, trans-scleral route, and the pars plana route (See Figure 2). Trans-corneal and trans-scleral routes are associated with cataract formation, synechiae, choroidal bleeding, and reflux from the injection site11,44,45,47,48,49. We adopted the pars plana approach as a direct visualization of the injection process, and the injection site can be achieved in real-time under the microscope.
We recently described a method that can differentiate human embryonic stem cells (hESCs) into photoreceptor progenitors under xenofree, chemically defined conditions using recombinant human retina-specific laminin isoform LN523. Since LN523 was found to be present in the retina, we hypothesized that the extracellular matrix niche of the human retina could be recapitulated in vitro and thereby support photoreceptor differentiation from the hESCs36. Single-cell transcriptomic analysis showed that photoreceptor progenitors co-expressing cone-rod homeobox and recoverin were generated after 32 days. A retinal degeneration 10 (rd10) mutant mouse model that mimics autosomal human retinitis pigmentosa was used to evaluate the efficacy of the day 32 hESC-derived photoreceptor progenitors in-vivo. The hESC-derived photoreceptor progenitor cells were injected into the sub-retinal space of rd10 mice at P20, where photoceptor dysfunction and degeneration are ongoing36. Here, we describe a detailed protocol for the preparation of the post-cryopreserved hESC-derived photoreceptor progenitors and delivery into the sub-retinal space of rd10 mice. This method can also be used to administer AAVs, cell suspensions, peptides, or chemicals into the sub-retinal space in mice.
The in vivo experiments were done in accordance with the guidelines and protocol approved by the Institutional Animal Care and Use Committee of SingHealth (IACUC) and the Association for Research in Vision and Ophthalmology (ARVO) Statement for the use of animals in Ophthalmic and Vision Research. The pups were immunosuppressed from P17 (pre-transplantation) to P30 (post-transplantation) by feeding them drinking water containing cyclosporine (260 g/L).
1. Preparation of Day 32 hESC-derived photoreceptor progenitors after cryopreservation
2. Sub-retinal delivery of the hESCs in rd10 mice
The 10 µL glass syringe was assembled according to the manufacturer's instructions (Figure 1), and the blunt needle used to deliver the cell suspension/media is shown in Figure 1B. Different approaches for sub-retinal injection are illustrated in Figure 2. We describe the pars plana approach in this protocol (Figure 2C). The blunt needle mounted on a glass syringe was inserted through a sclerot...
The sub-retinal injection has been used for cell suspension transplantation to treat RPE and retinal diseases23,25,26,27,28,31,40. This approach is highly essential in rodent studies not only for cell transplantation and gene therapy approaches but also to evaluate novel therapeutic compound...
Hwee Goon Tay is a co-founder of Alder Therapeutics AB. Other authors declare no competing interests.
We thank Wei Sheng Tan, Luanne Chiang Xue Yen, Xinyi Lee, and Yingying Chung for providing technical assistance for the preparation of the day 32 hESC-derived photoreceptor progenitors after cryopreservation. This work was supported in part by grants from the National Medical Research Council Young Investigator Research Grant Award (NMRC/OFYIRG/0042/2017) and National Research Foundation 24th Competitive Research Program Grant (CRP24-2020-0083) to H.G.T.
Name | Company | Catalog Number | Comments |
0.3% Tobramycin | Novartis | NDC 0078-0813-01 | Tobrex (3.5 g) |
0.3% Tobramycin and 0.1% Dexamethasone | Novartis | NDC 0078-0876-01 | Tobradex (3.5 g) |
0.5% Proparacaine hydrochloride | Alcon | NDC 0998-0016-15 | 0.5% Alcaine (15 mL) |
1 mL Tuberculin syringe | Turemo | SS01T2713 | |
1% Tropicamide | Alcon | NDC 0998-0355-15 | 1% Mydriacyl (15 mL) |
2.5% Phenylephrine hydrochloride | Alcon | NDC 0998-0342-05 | 2.5% Mydfrin (5 mL) |
24-well tissue culture plate | Costar | 3526 | |
30 G Disposable needle | Becton Dickinson (BD) | 305128 | |
33 G, 20 mm length blunt needles | Hamilton | 7803-05 | |
Automated Cell Counter | NanoEnTek | Model: Eve | |
B27 without Vitamin A | Life Technologies | 12587001 | 2%36 |
Buprenorphine | Ceva | Vetergesic vet (0.3 mg/mL) | |
CKI-7 | Sigma | C0742 | 5 µM36 |
Cyclosporine | Novartis | 260 g/L in drinking water | |
Day 32 hESC-derived photoreceptor progenitor cells | DUKE-NUS Medical School | Human embryonic stem cells are differentiated for 32 days. See protocol in Ref 36. | |
Gauze | Winner Industries Co. Ltd. | 1SNW475-4 | |
Glasgow Minimum Essential Medium | Gibco | 11710–035 | |
hESC cell line H1 | WiCell Research Institute | WA01 | |
Human brain-derived neurotrophic factor (BDNF) | Peprotech | 450-02-50 | 10 ng/mL36 |
Human ciliary neurotrophic factor (CNTF) | Prospec-Tany Technogene | CYT-272 | 10 ng/mL36 |
Ketamine hydrochloride (100 mg/mL) | Ceva Santé Animale | KETALAB03 | |
LN-521 | Biolamina | LN521-02 | 1 µg36 |
mFreSR | STEMCELL Technologies | 5854 | |
Microlitre glass syringe (10 mL) | Hamilton | 7653-01 | |
N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT) | Selleckchem | S2215 | 10 µM36 |
N-2 supplement | Life Technologies | A13707-01 | 1%36 |
Non-essential amino acids (NEAA) | Gibco | 11140–050 | 1x36 |
NutriStem XF Media | Satorius | 05-100-1A | |
Operating microscope | Zeiss | OPMI LUMERA 700 | With Built-in iOCT function |
PRDM (Photoreceptor differentiation medium, 50ml) | DUKE-NUS Medical School | See media composition36. Basal Medium, 10 µM DAPT, 10 ng/mL BDNF, 10 ng/mL CNTF, 0.5 µM Retinoic acid, 2% B27 and 1% N2. Basal Medium: 1x GMEM, 1 mM sodium pyruvate, 0.1 mM B-mercaptoethanol, 1x Non-essential amino acids (NEAA). | |
Pyruvate | Gibco | 11360–070 | 1 mM36 |
Rd10 mice | Jackson Laboratory | B6.CXB1-Pde6brd10/J mice | Gender: male/female, Age: P20 (injection), Weight: 3-6 g |
Retinoic acid | Tocris Bioscience | 0695/50 | 0.5 µM36 |
Round Cover Slip (12 mm) | Fisher Scientific | 12-545-80 | |
SB431542 | Sigma | S4317 | 0.5 µM36 |
Vidisic Gel (10 g) | Dr. Gerhard Mann | ||
Xylazine hydrochloride (20 mg/mL) | Troy Laboratories | LI0605 | |
β-mercaptoethanol | Life Technologies | 21985–023 | 0.1 mM36 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved