A subscription to JoVE is required to view this content. Sign in or start your free trial.
Intrinsically disordered regions (IDRs) are flexible protein domains that modify their conformation in response to environmental changes. Ensemble fluorescence resonance energy transfer (FRET) can estimate protein dimensions under different conditions. We present a FRET approach to assess IDR structural sensitivity in living Saccharomyces cerevisiae cells under hyperosmotic stress.
Intrinsically disordered regions (IDRs) are protein domains that participate in crucial cellular processes. During stress conditions, the physicochemical properties of the cellular environment change, directly impacting the conformational ensemble of IDRs. IDRs are inherently sensitive to environmental perturbations. Studying how the physicochemical properties of the cell regulate the conformational ensemble of IDRs is essential for understanding the environmental control of their function. Here, we describe a step-by-step method for measuring the structural sensitivity of IDRs in living Saccharomyces cerevisiae cells in response to hyperosmotic stress conditions. We present the use of ensemble fluorescence resonance energy transfer (FRET) to estimate how the global dimensions of IDRs change during a progressive increase of hyperosmotic stress imposed on cells with any osmolyte. In addition, we provide a script for processing fluorescence measurements and comparing structural sensitivity for different IDRs. By following this method, researchers can obtain valuable insights into the conformational changes that IDRs undergo in the complex intracellular milieu upon changing environments.
Intrinsically disordered regions (IDRs) are critical components in cellular processes1. In combination with structured domains, IDRs are essential for protein functions. The amino acid composition of IDRs is biased, represented mainly by charged, hydrophilic, and small residues. Because of this property, IDRs are considered low complexity domains2,3. Numerous IDRs have garnered attention, primarily because these regions play a crucial role in pathological conditions, particularly neurodegenerative diseases. Such diseases are characterized by self-assembly and subsequent extracellular or intracellular deposition of IDRs in neurons4. Examples of such IDRs include amyloid-β (Aβ) in Alzheimer's disease, huntingtin (HTT) in Huntington's disease, and TAR DNA-binding protein-43 (TDP-43) and fused in sarcoma (FUS) in amyotrophic lateral sclerosis and frontotemporal dementia4. The study of the structural rearrangements of IDRs in the context of disease has been significantly enhanced by spectroscopic methods, including fluorescence resonance energy transfer (FRET).
The hydrophilic and extended nature of IDRs makes them extremely sensitive to changes in the physicochemical properties of the solution environment5. The degree by which the conformational ensemble of IDRs is modified by the environment is called structural sensitivity5,6,7. Different techniques can be used to study the conformation and dynamics of IDRs, including circular dichroism (CD) and small-angle X-ray scattering (SAXS)8,9. Unfortunately, CD and SAXS require large quantities of purified proteins, so they are not appropriate for studies in cells. In contrast, FRET is a technique that measures the fluorescence intensity of two fluorescent molecules that specifically label one IDR, meaning that they can be monitored in complex mixtures such as living cells10. Dynamically measuring the structural sensitivity of IDRs in living cells is necessary for understanding how the environment regulates the conformation and function of the disordered proteome.
FRET is a powerful method for quantifying the structural sensitivity of IDRs, as well as globular and multidomain proteins in living cells. The method requires a construct consisting of an IDR of interest sandwiched between two fluorescent proteins (FP), known as a FRET pair. For this protocol, we suggest the use of mCerulean3 as the donor FP and Citrine as the acceptor FP, because of their large dynamic range, compared to other FPs reported in a previous study about IDRs sensitivity6. FRET has previously been exploited to measure the structural sensitivity of a plant IDR in different cellular contexts6. In addition, this technique has been used to characterize overall protein dimensions of IDRs by different research groups both in vitro and in vivo5,11.
Here, we describe the ensemble FRET method for studying the structural sensitivity of IDRs in living yeast (Saccharomyces cerevisiae) cells. We show representative results that are based in a plant IDR called AtLEA4-5. AtLEA4-5 is disordered in solution, but folds into α-helix when macromolecular crowding is induced in vitro12. AtLEA4-5 is a good reference model for this method because it is relatively small (158 residues), disordered and sensitive to environmental perturbation as reported in silico and in vitro6,12. The method presented here can be scaled for high throughput approaches because yeast cells are easy to grow, and the treatment is applied in small volumes. In addition, small modifications to the protocol can be applied to other cellular systems such as bacteria and plant cells6. The protocol can be performed in any molecular biology laboratory with access to a microplate reader with fluorescence mode, an equipment available in most research institutions.
1. Plasmid construct
2. Plasmid expression in yeast cells
NOTE: Use standard aseptic techniques to perform the following steps. Use a culture laminar flow hood or a lighter.
3. Validation of yeast transformants
4. Preparation of yeast cell culture for FRET assay
5. Yeast cell preparation for FRET assay
6. Setting up the fluorescence measurements
NOTE: The present scanning is considered to be performed in a microplate reader with fluorescence mode.
7. Preparation of hypertonic solutions and fluorescence measurements
8. Data processing using the FRET efficiency method
NOTE: For readers with knowledge of the R programming language, we provide a set of R scripts to perform data processing described in this section. Scripts can be found at https://github.com/Kaz-bits/cuevaslab-procotols/tree/main/FRET. Follow the instructions in the README file.
9. Data processing using the FRET ratio method
NOTE: If donor-only measurements cannot be acquired, perform the FRET ratio method. This method compares the FRET ratio across the different hyperosmotic stress conditions. Steps 7.1 to 7.5 should be performed before the steps of this section to validate a typical FRET behavior. For readers with knowledge of the R programming language, we provide a set of R scripts to perform data processing described in this section. Scripts can be found at https://github.com/Kaz-bits/cuevaslab-procotols/tree/main/FRET. Follow the instructions in the README file.
After transforming yeast cells with pDRFLIP38-AtLEA4-5 plasmid, the fluorescence of the positive transformants was observed with a blue light transilluminator and a filter (Figure 1). Preparing the different solutions to induce hyperosmotic stress is time-consuming, so we suggest following the 96-well template of Figure 2. Immediately after the hyperosmotic stress treatment with varying concentrations of sodium chloride, the fluorescence emission spectra were ac...
The method presented here offers a way to obtain insights into how the global dimensions of the ensemble of IDRs sense and respond to environmental perturbations. This method relies on a genetically encoded construct and requires no additional components beyond a plasmid stable expression in yeast cells, making it adaptable for potential applications in other cell types. Moreover, it is versatile for exploring other physicochemical perturbations that eukaryotic cells experience during their life cycle21...
The authors declare no conflicts of interest.
We thank members of the Cuevas-Velazquez lab for the critical review of the manuscript. This work was supported by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (UNAM-PAPIIT) project number IA203422; Consejo Nacional de Humanidades, Ciencias y Tecnología (CONAHCYT), project number 252952; and Programa de Apoyo a la Investigación y el Posgrado, Facultad de Química, Universidad Nacional Autónoma de México, Grant 5000-9182. CET (CVU 1083636) and CAPD (CVU 1269643) acknowledge CONAHCYT for their M.Sc. Scholarship.
Name | Company | Catalog Number | Comments |
96-well plate | Greiner Bio-One | 655096 | |
Agar | Sigma-Aldrich | 5040 | |
BglII | New England BioLabs | R0144S | |
BJ5465 cells | American Type Culture Collection | 208289 | |
Buffer MES 50 mM | Sigma-Aldrich | M8250 | |
Buffer Tris-HCl 10 mM | Invitrogen | 15506017 | |
EDTA 1 mM | Merck | 108452 | |
Falcon tubes | Corning | 352057 | |
LB media | Sigma-Aldrich | L2897 | |
Lithium acetate 0.1 M | Sigma-Aldrich | L6883 | |
Low Melt Agarose | GOLDBIO | A-204-25 | |
Microcentrifuge | eppendorf | 5452000010 | |
Miniprep kit | ZymoPure | D4210 | |
NaOH 0.02 M | Merck | 106462 | |
PEG 3,350 40% | Sigma-Aldrich | 1546547 | |
plasmid pDRFLIP38-AtLEA4-5 | addgene | 178189 | |
Plate reader | BMG LABTECH | CLARIOstar Plus | |
SacI | New England BioLabs | R3156S | |
Salmon sperm DNA 2 mg/mL | Thermo Fisher Scientific | 15632011 | |
SD-Ura | Sigma-Aldrich | Y1501 | |
Sodium cloride | Sigma-Aldrich | S9888 | |
Taq polymesare | Promega | M5123 | |
Transiluminator | Accuris instruments | E4000 | |
UV-Visible spectrophotometer | Thermo Fisher Scientific | Biomate3 | |
YPD media | Sigma-Aldrich | Y1500 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved