A subscription to JoVE is required to view this content. Sign in or start your free trial.
We have developed a simplified and cost-effective approach for electrode fabrication and conducted recordings of signals across multiple regions in freely moving mice. Utilizing optogenetics, alongside multi-region electrophysiology and calcium signal recording, enabled the revelation of neuronal activities across regions in the seizure kindling model.
Epilepsy is a neurological disorder characterized by synchronized abnormal discharges involving multiple brain regions. Focal lesions facilitate the propagation of epileptic signals through associated neural circuits. Therefore, in vivo recording of local field potential (LFP) from the critical brain regions is essential for deciphering the circuits involved in seizure propagation. However, current methods for electrode fabrication and implantation lack flexibility. Here, we present a handy device designed for electrophysiological recordings (LFPs and electroencephalography [EEG]) across multiple regions. Additionally, we seamlessly integrated optogenetic manipulation and calcium signaling recording with LFP recording. Robust after-discharges were observed in several separate regions during epileptic seizures, accompanied by increasing calcium signaling. The approach used in this study offers a convenient and flexible strategy for synchronous neural recordings across diverse regions of the brain. It holds the potential for advancing research on neurological disorders by providing insights into the neural profiles of multiple regions involved in these disorders.
Epilepsy is a common neurological condition characterized by recurrent seizures, which manifest as convulsions, sensory disturbances, and loss of consciousness1. The pathophysiological mechanisms underlying epilepsy are complex and involve multiple interconnected brain regions2,3. Recent advances in neuroimaging have shed light on the large-scale networks involved in epilepsy4,5. However, understanding of the intricate circuitry and network mechanisms underlying the generation and propagation of epilepsy remains limited, partly due to the insufficient application of multi-region neural recording techniques6. Therefore, developing a flexible, integrated method capable of simultaneously monitoring neural activity across disparate brain regions is imperative.
Electrophysiological recordings are conducted to capture seizures and determine the presence of epilepsy7. Except for recording electrophysiological activity, there is a growing emphasis on the precise calcium activity of specific neural populations in epilepsy studies8,9. Advancements in calcium indicator synthesis and various probe designs have prompted researchers to adopt fiber photometry for capturing changes in neuronal activity and neural substances within the brain10,11. The two independent methods of detecting neuronal activity, namely electrophysiology and fiber photometry recording, complement each other, facilitating a more comprehensive understanding of dynamic neuronal processes.
Additionally, synchronous recording and modulating neural activity are pivotal for gaining insights into the brain functioning at both network and cellular levels. This approach enables researchers to observe and manipulate the brain's complex processes in real-time. Optogenetics has emerged as an indispensable tool for probing neural signaling, owing to its distinctive ability for selective stimulation or inhibition12. Despite widespread applications of multi-site electrophysiological recording in neuroscience13, the integration of multi-region electrophysiological recording with fiber photometry and optogenetic manipulation remains limited. More importantly, current methods for fabricating and implanting multi-region electrodes lack flexibility14. These limitations hinder our capacity to dissect specific circuit functions and interactions across multiple regions. Here, we present a cost-effective and convenient multi-region in vivo recording approach that sheds light on neuronal processes across regions in kindling-induced seizures and other neuropsychiatric disorders.
This protocol received approval from the Animal Care and Use Committee at Fudan University and was conducted following the guidelines and regulations designed by the National Institutes of Health Guide for Care and Use of Laboratory Animals. All possible measures were implemented to minimize the number of animals utilized in this study. The time required to perform each step is included in the respective steps.
1. Preparation of electrodes (Figure 1)
2. Protocol for electrode implantation (Figure 2)
3. Protocol for recording in vivo brain
4. Data processing
We combined optogenetics with multiregional electrophysiological recording and calcium imaging to observe neuronal activity across various brain regions during optogenetic seizures. For this purpose, an adeno-associated virus (AAV) expressing ChrimsonR under the control of the CaMKIIα promoter (AAV-CaMKIIα-ChrimsonR-mcherry)16 was injected into a classical epileptogenic site, the piriform cortex (ROI 1)17, in rodents. Additionally, AAV-hsyn-Gcamp6m
Here, we employed a self-made optrode device for in vivo neural signal recording across multiple regions. The feasibility of this system for simultaneous optogenetic stimulation, calcium signal recording, and electrophysiological recording has been validated. The electrode preparation method described herein is efficient and cost-effective. According to the experimental design, we could record signals from relevant brain regions. The strategic arrangement of optrodes allows for the potential extraction of abunda...
The authors declare no competing financial interests to disclose.
This research was supported by the National Natural Science Foundation of China (31871085), the Natural Science Foundation of Shanghai (21ZR1407300), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology.
Name | Company | Catalog Number | Comments |
8-32 adapter | Plexon | Custom ordered | Connect the female connector and headstage |
AAV-CaMKIIα-ChrimsonR-mcherry | Taitool Bioscience | S0371-9 | 4 x 1012 VG/mL |
AAV-hsyn-Gcamp6m | Taitool Bioscience | S0471-9 | 4 x 1012 VG/mL |
DAPI | Sigma | 236276 | Titered 1:500 |
Dental Cement | New Century Dental | 430205 | |
Electrophysiological recordings system | Plexon | Omniplex | |
Enameled wire | N/A | Custom ordered | Diameter = 0.2 mm |
Female connector | N/A | Custom ordered | 1.25 mm pitch |
Glue | Loctite | 45282 | |
Laser | Changchun New Industries | BH81563 | 635 nm |
MATLAB | MathWorks | R2021b | |
Microdrill | RWD | 78001 | |
Multichannel fiber photometry | ThinkerTech | FPS-SS-MC-LED | |
Optical fiber | Xi'an Bogao | L-200UM | Select the appropriate fiber length based on the depth of the targeted brain regions. |
PFA-Coated Tungsten wire | A-M System | 795500 | Bare 0.002"; Coated 0.0040" |
Power meter | Thorlabs | PM100D | |
Stereotaxic Fxrame | RWD | 68807 | |
Tissue adhesive | 3M | 1469SB |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved