Source: Nicholas Timmons, Asantha Cooray, PhD, Department of Physics & Astronomy, School of Physical Sciences, University of California, Irvine, CA
Inertia is the resistance of an object to being accelerated. In linear kinematics, this concept is directly related to the mass of an object. The more massive an object, the more force is required to accelerate that object. This is seen directly in Newton's second law, which states that force is equal to mass times acceleration.
For rotation, there is a similar concept called rotational inertia. In this case, rotational inertia is the resistance of an object to being rotationally accelerated. Rotational inertia is dependent not only upon mass, but also upon the distance of mass from the center of rotation.
The goal of this experiment is to measure the rotational inertia of two rotating masses and to determine the dependence upon mass and distance from the axis of rotation.
1. Measure the moment of inertia of the long rod.