A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here we design two complementary mass cytometry (CyTOF) panels and optimize a CyTOF staining protocol with the aim of profiling the natural killer cell receptor and ligand repertoire in the setting of viral infections.
Natural killer (NK) cells are among the first responders to viral infections. The ability of NK cells to rapidly recognize and kill virally infected cells is regulated by their expression of germline-encoded inhibitory and activating receptors. The engagement of these receptors by their cognate ligands on target cells determines whether the intercellular interaction will result in NK cell killing. This protocol details the design and optimization of two complementary mass cytometry (CyTOF) panels. One panel was designed to phenotype NK cells based on receptor expression. The other panel was designed to interrogate expression of known ligands for NK cell receptors on several immune cell subsets. Together, these two panels allow for the profiling of the human NK cell receptor-ligand repertoire. Furthermore, this protocol also details the process by which we stain samples for CyTOF. This process has been optimized for improved reproducibility and standardization. An advantage of CyTOF is its ability to measure over 40 markers in each panel, with minimal signal overlap, allowing researchers to capture the breadth of the NK cell receptor-ligand repertoire. Palladium barcoding also reduces inter-sample variation, as well as consumption of reagents, making it easier to stain samples with each panel in parallel. Limitations of this protocol include the relatively low throughput of CyTOF and the inability to recover cells after analysis. These panels were designed for the analysis of clinical samples from patients suffering from acute and chronic viral infections, including dengue virus, human immunodeficiency virus (HIV), and influenza. However, they can be utilized in any setting to investigate the human NK cell receptor-ligand repertoire. Importantly, these methods can be applied broadly to the design and execution of future CyTOF panels.
Natural killer (NK) cells are innate immune cells whose primary role is to target and kill malignant, infected, or otherwise stressed cells. Through their secretion of cytokines such as IFNΞ³ and TNFΞ±, as well as their cytotoxic activity, NK cells can also shape the adaptive immune response to pathogens and malignancies. The NK response is mediated in part by the combinatorial signaling of germline-encoded inhibitory and activating receptors, which bind a myriad of ligands expressed on potential target cells. Several NK cell receptors have more than one ligand with new receptor-ligand pairs being identified regularly.
There is a particular interest in studying NK cells in the context of viral infections, where their ability to rapidly respond to stressed cells may limit viral spread or promote the development of NK cell evasion strategies. This interest in NK cell biology extends to the field of cancer immunotherapy where researchers are investigating the role of NK cells in tumor immunosurveillance and in the tumor microenvironment1. However, the ability to profile NK cell-target cell interactions is complicated by the fact that human NK cells can express over 30 receptors which in turn can interact with over 30 known ligands2. The simultaneous detection of multiple NK cell receptors and their cognate ligands is, therefore, necessary to capture the complexity of the receptor-ligand interactions that control NK function. Consequently, we turned to mass cytometry (CyTOF), which allows for the simultaneous detection of over 40 markers at the single cell level. Our goal was to create two CyTOF panels to profile the NK cell receptor-ligand repertoire. We also wanted to design a protocol for effective processing and staining of clinical samples. Clinical human samples provide a wealth of information on how the body responds to viral infection. Therefore, we developed this protocol to investigate expression of NK cell receptors and their cognate ligands in parallel for better standardization, improved recovery, reduced reagent consumption, and limited batch effects.
Several flow cytometry panels designed to characterize the phenotype of human NK cells have been published previously3,4,5,6,7,8. Most of these panels are limited in their ability to capture the breadth of the receptor-ligand repertoire, only allowing for the detection of a limited selection of markers. Moreover, these panels are limited by signal overlap between fluorochromes. CyTOF uses antibodies conjugated to metal isotopes, which are read out by time-of-flight mass spectrometry, thus dramatically reducing spillover between channels.
Like us, other researchers have turned to CyTOF to study NK cells9,10,11,12,13,14, though generally with fewer NK cell markers, which reduces the depth of phenotyping. While the general staining protocols used by these groups are similar to ours, there are some key differences. Other protocols do not involve isolating NK cells prior to staining even though the researchers are only interested in that subset13,14. Given that NK cells only make up 5-20% of peripheral blood mononuclear cells (PBMCs), staining whole PBMCs rather than isolated NK cells means that most of the collected events will not be NK cells. This reduces the amount of data generated on the subset of interest and results in inefficient use of machine time. Additionally, while many of these panels interrogate expression of NK cell receptors such as killer Ig-like receptors (KIRs), NKG2A/C/D, and the natural cytotoxicity receptors (NKp30, NKp44, and NKp46), expression of these markers is not put into a broader context due to the absence of data on expression of their respective ligands. Consequently, while these previously published methods for investigating NK cells via CyTOF are sufficient for broad NK cell phenotyping, used in isolation, they cannot provide a comprehensive picture of NK cell activity. This brings us to the major advantage of the methods described here, which is that up to this point there are no published flow cytometry or CyTOF panels focused on exploring the expression of ligands for NK cell receptors. Importantly, our ligand panel has several open channels to allow for the addition of markers to suit the unique needs of each experiment.
Considering that one of the main limitations of CyTOF is the inability to recover the sample after analysis, this method may not be appropriate for researchers who have limited samples with which they are interested in performing additional experiments. Additionally, the low throughput nature of CyTOF means that the data generated will be of poor quality if the starting number of cells is low. Barring these two limitations, this method will perform well in any setting to investigate receptor-ligand interactions between NK cells and target cells.
Anonymized healthy adult PBMCs were obtained from leukoreduction system chambers purchased from the Stanford Blood Center. PBMCs from de-identified healthy pediatric donors and pediatric acute dengue patients were obtained from Gorgas Memorial Institute of Health Studies in Panama City, Panama and hospitals belonging to the Ministry of Health, the Social Security System in Panama City, and suburban areas. The dengue study protocol was approved by the IRB of Hospital del NiΓ±o (CBIHN-M-0634), then approved by the committees of ICGES, CSS, Santo Tomas Hospital, and Stanford University. PBMCs from HIV-infected patients on antiretroviral treatment were obtained from ACTG study A5321.
1. Antibody labeling, panel preparation, and storage
2. Staining protocol
Antibodies were conjugated to metal isotopes using commercially available labeling kits, according to the manufacturer's instructions. Antibody clones were validated by flow cytometry and mass cytometry prior to use in this panel. An initial list of clones was selected based on review of the literature and antibody availability. The expression levels of some ligands for NK cell receptors are low or undetectable on healthy PBMCs. Therefore, positive staining for some antibodies was val...
Here we describe the design and application of two complimentary CyTOF panels aimed at profiling the NK cell receptor-ligand repertoire. This protocol includes several steps that are critical to obtaining quality data. CyTOF uses heavy metal ions, rather than fluorochromes, as label probes for antibodies19. This technology is therefore subject to potential contaminating signals from environmental metals20. Potential sources of metal impurities include laboratory dish soap (...
The authors have nothing to disclose.
The authors would like to thank all current and former members of the Blish Laboratory who contributed to this panel. Thank you to the AIDS Clinical Trials Group and the ACTG A5321 team as well as Dr. Sandra López-Vergès and Davis BeltrÑn at Gorgas Memorial Institute for Health Studies for sample curation. Finally, thank you to Michael Leipold, Holden Maecker, and the Stanford Human Immune Monitoring Center for use of their Helios machines. This work was supported by NIH U19AI057229, NIH R21 AI135287, NIH R21 AI130532, NIH DP1 DA046089, and Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Diseases #1016687 to CB, NIH Ruth L. Kirschstein Institutional National Research Service Award T32 AI007502, TL1 TR001084 and NIH/NIAID K08 AI138640 to EV, National Science Foundation Graduate Research Fellowship DGE-1656518 to JM and NIH training grant T32-AI-007290 (PI Olivia Martinez). The ACTG study received grant support from AI-68634 (Statistical and Data Management Center), UM1-A1-26617, AI-131798, and AI-68636 (ACTG). CB is the Tashia and John Morgridge Faculty Scholar in Pediatric Translational Medicine from the Stanford Maternal Child Health Research Institute and an Investigator of the Chan Zuckerberg Biohub.
Name | Company | Catalog Number | Comments |
89Y | Sigma-Aldrich | 204919 | |
102-Palladium nitrate | Trace Sciences International | Special Order | |
104-Palladium nitrate | Trace Sciences International | Special Order | |
106-Palladium nitrate | Trace Sciences International | Special Order | |
108-Palladium nitrate | Trace Sciences International | Special Order | |
115In | Trace Sciences International | Special Order | |
141Pr | Fluidigm | 201141A | |
142Nd | Fluidigm | 201142A | |
143Nd | Fluidigm | 201143A | |
144Nd | Fluidigm | 201144A | |
145Nd | Fluidigm | 201145A | |
146Nd | Fluidigm | 201146A | |
147Sm | Fluidigm | 201147A | |
148Nd | Fluidigm | 201148A | |
149Sm | Fluidigm | 201149A | |
150Nd | Fluidigm | 201150A | |
151Eu | Fluidigm | 201151A | |
152Sm | Fluidigm | 201152A | |
153Eu | Fluidigm | 201153A | |
154Sm | Fluidigm | 201154A | |
155Gd | Fluidigm | 201155A | |
156Gd | Fluidigm | 201156A | |
157Gd | Trace Sciences International | N/A | |
158Gd | Fluidigm | 201158A | |
159Tb | Fluidigm | 201159A | |
160Gd | Fluidigm | 201160A | |
161Dy | Fluidigm | 201161A | |
162Dy | Fluidigm | 201162A | |
163Dy | Fluidigm | 201163A | |
164Dy | Fluidigm | 201164A | |
165Ho | Fluidigm | 201165A | |
166Er | Fluidigm | 201166A | |
167Er | Fluidigm | 201167A | |
168Er | Fluidigm | 201168A | |
169Tm | Fluidigm | 201169A | |
170Er | Fluidigm | 201170A | |
171Yb | Fluidigm | 201171A | |
172Yb | Fluidigm | 201172A | |
173Yb | Fluidigm | 201173A | |
174Yb | Fluidigm | 201174A | |
175Lu | Fluidigm | 201175A | |
176Yb | Fluidigm | 201176A | |
209Bi anti-CD16 | Fluidigm | 3209002B | Clone 3G8. Used at a 1:50 dilution.Β |
697 cells | Creative Bioarray | CSC-C0217 | |
Amicon Ultra Centrifugal Filter Units 0.5 with Ultracel-30 Membrane, 30 kDa | Millipore | UFC503096 | |
Anhydrous acetonitrile | Fisher Scientific | BP1165-50 | |
anti-2B4 | Biolegend | 329502 | Clone C1.7. |
anti-B7-H6 | R&D Systems | MAB7144 | Clone 875001. |
anti-CCR2 | Biolegend | 357202 | Clone K036C2. |
anti-CD2 | Biolegend | 300202 | Clone RPA-2.10. |
anti-CD3 | Biolegend | 300402 | Clone UCHT1. |
anti-CD4 | Biolegend | 317402 | Clone OKT4. |
anti-CD4 | Biolegend | 344602 | Clone SK3. |
anti-CD7 | Biolegend | 343102 | Clone CD7-6B7. |
anti-CD8 | Biolegend | 344702 | Clone SK1. |
anti-CD11b | Biolegend | 301302 | Clone ICRF44. |
anti-CD14 | Biolegend | 301802 | Clone M5E2. |
anti-CD19 | Biolegend | 302202 | Clone HIB19. |
anti-CD33 | Biolegend | 303402 | Clone WM53. |
anti-CD38 | Biolegend | 303502 | Clone HIT2. |
anti-CD48 | Biolegend | 336702 | Clone BJ40. |
anti-CD56 | BD Pharmingen | 559043 | Clone NCAM16.2. |
anti-CD57 | Biolegend | 322302 | Clone HCD57. |
anti-CD62L | Biolegend | 304802 | Clone DREG-56. |
anti-CD69 | Biolegend | 310902 | Clone FN50. |
anti-CD94 | Biolegend | 305502 | Clone DX22. |
anti-CD95 | Biolegend | 305602 | Clone DX2. |
anti-CD155 | Biolegend | 337602 | Clone SKII.4. |
anti-CXCR6 | Biolegend | 356002 | Clone K041E5. |
anti-DNAM-1 | BD Biosciences | 559787 | Clone DX11. |
anti-DR4 | Biolegend | 307202 | Clone DJR1. |
anti-DR5 | Biolegend | 307302 | Clone DJR2-2. |
anti-FAS-L | Biolegend | 306402 | Clone NOK-1. |
anti-FcRg | Millipore | 06-727 | Polyclonal antibody. |
anti-HLA-C,E | Millipore | MABF233 | Clone DT9. |
anti-HLA-Bw4 | Miltenyi Biotec | Special Order | Clone REA274. |
anti-HLA-Bw6 | Miltenyi Biotec | 130-124-530 | Clone REA143. |
anti-HLA-DR | Biolegend | 307602 | Clone L243. |
anti-HLA-E | Biolegend | 342602 | Clone 3D12. |
anti-ICAM-1 | Biolegend | 353102 | Clone HA58. |
anti-Ki-67 | Biolegend | 350502 | Clone Ki-67. |
anti-KIR2DL1/KIR2DS5 | R&D Systems | MAB1844 | Clone 143211. |
anti-KIR2DL3 | R&D Systems | MAB2014 | Clone 180701. |
anti-KIR2DL5 | Miltenyi Biotec | 130-096-200 | Clone UP-R1. |
anti-KIR2DS4 | R&D Systems | MAB1847 | Clone 179315. |
anti-KIR3DL1 | BD Biosciences | 555964 | Clone DX-9. |
anti-LFA-3 | Biolegend | 330902 | Clone TS2/9. |
anti-LILRB1 | R&D Systems | 292319 | Clone MAB20172. |
anti-LLT-1 | R&D Systems | AF3480 | Clone 402659. |
anti-MICA | R&D Systems | MAB1300-100 | Clone 159227. |
anti-MICB | R&D Systems | MAB1599-100 | Clone 236511. |
anti-Nectin-1 | Biolegend | 340402 | Clone R1.302. |
anti-Nectin-2 | Biolegend | 337402 | Clone TX31. |
anti-NKG2A | R&D Systems | MAB1059 | Clone 131411. |
anti-NKG2C | R&D Systems | MAB1381 | Clone 134522. |
anti-NKG2D | Biolegend | 320802 | Clone 1D11. |
anti-NKp30 | Biolegend | 325202 | Clone P30-15. |
anti-NKp44 | Biolegend | 325102 | Clone P44-8. |
anti-NKp46 | Biolegend | 331902 | Clone 9E2. |
anti-NTB-A | Biolegend | 317202 | Clone NT-7. |
anti-Pan HLA class I | Biolegend | 311402 | Clone W6/32. |
anti-PD1 | Biolegend | 329902 | Clone EH12.2H7. |
anti-Perforin | Abcam | ab47225 | Clone B-D48. |
anti-Siglec-7 | Biolegend | 347702 | Clone S7.7. |
anti-Syk | Biolegend | 644302 | Clone 4D10.2. |
anti-TACTILE | Biolegend | 338402 | Clone NK92.39. |
anti-TIGIT | R&D Systems | MAB7898 | Clone 741182. |
anti-ULBP-1 | R&D Systems | MAB1380-100 | Clone 170818. |
anti-ULBP-2, 5, 6 | R&D Systems | MAB1298-100 | Clone 165903. |
Antibody Stabilizer | Candor Bioscience | 131 050 | |
Benzonase Nuclease | Millipore | 70664 | |
Bond-Breaker TCEP Solution | Thermo Fisher Scientific | 77720 | |
Bovine Serum Albumin solution | Sigma-Aldrich | A9576 | |
Calcium chloride dihydrate (CaCl2+2H2O) | Sigma-Aldrich | 223506-25G | |
Cis-Platinum(II)diamine dichloride (cisplatin) | Enzo Life Sciences | ALX-400-040-M250 | A 100 mM stock solution was prepared in DMSO and divided into 25 Β΅L aliquots. Used at a 25 Β΅M dilution for live/dead stain. Signal appears in 194Pt and 195Pt channels. |
DMSO | Sigma-Aldrich | D2650 | |
eBioscience Permeabilization Buffer | Thermo Fisher Scientific | 00-8333-56 | |
EDTA (0.5 M) | Hoefer | GR123-100 | A double-concentrated HEPES buffer with EDTA was made according to the following recipe: 1.3 g NaCl (Thermo Fisher Scientific), 27 mg CaCl2+2H2O (Sigma-Aldrich), 23 mg MgCl2 (Sigma-Aldrich), 83.6 mg KH2PO4 (Thermo Fisher Scientific), 4 mL of 1M HEPES (Thermo Fisher Scientific), 2 mL of 0.5M EDTA (Hoefer, Holliston, MA, USA), and 100mL H2O. The pH of this double-concentrated HEPES buffer was adjusted to a pH of 7.3 using 1M HCl and 1M NaOH. |
EQ Four Element Calibration Beads | Fluidigm | 201078 | |
Fetal Bovine Serum | Thermo Fisher Scientific | N/A | |
Helios mass cytometer | Fluidigm | N/A | |
HEPES (1M) | Thermo Fisher Scientific | 15630080 | |
HyClone Antibiotic/Antimycotic Solution (Pen/Strep/Fungiezone) solution | Fisher Scientific | SV3007901 | |
Iridium - 191Ir/193Ir intercalator | DVS Sciences (Fluidigm) | 201192B | Used at a 1:10000 dilution. |
Isothiocyanobenzyl-EDTA (ITCB-EDTA) | Dojindo Molecular Technologies, Inc. | M030-10 | Diluted to 1.25 mg/mL in anhydrous acetonitrile. |
K562 cells | American Type Culture Collection (ATCC) | ATCC CCL-243 | |
L-Glutamine (200 mM) | Thermo Fisher Scientific | SH30034 | |
Magnesium chloride (MgCl2) | Sigma-Aldrich | 208337-100G | |
Maxpar X8 Antibody Labeling Kits | Fluidigm | N/A | No catalog number as kits come with metals.Β |
Millex-VV Syringe Filter Unit, 0.1 Β΅m | Millipore | SLVV033RS | |
Milli-Q Advantage A10 Water Purification System | Millipore | Z00Q0V0WW | |
MS Columns | Miltenyi Biotec | ||
NALM6 cells | American Type Culture Collection (ATCC) | ATCC CRL-3273 | |
Nanosep Centrifugal Devices with Omega Membrane 3K | Pall Corporation | OD003C35 | |
NK Cell Isolation Kit, human | Miltenyi Biotec | 130-092-657 | |
Paraformaldehyde (16%) | Electron Microscopy Sciences | 15710 | |
PBS | Thermo Fisher Scientific | 10010023 | |
Potassium Phosphate Monobasic (KH2PO4) | Fisher Scientific | MP021954531 | |
Qdot 655 anti-CD19 | Thermo Fisher Scientific | Q10179 | Clone SJ25-C1. Used at a 1:50 dilution. Signal appears in 112Cd-114Cd channels.Β |
Qdot 655 anti-HLA-DR | Thermo Fisher Scientific | Q22158 | Clone TΓΌ36. Used at a 1:200 dilution. |
Rockland PBS | Rockland Immunochemicals, Inc. | MB-008Β | Used to make CyPBS (10X Rockland PBS diluted to 1X in Milli-Q water) and CyFACS buffers (10X Rockland PBS diluted to 1X in Milli-Q water with 0.1% BSA and 0.05% sodium azide). Buffers were sterile-filtered through a 0.22 Β΅M filter and sotred at 4Β°C in Stericup bottles.Β |
RPMI 1640 | Thermo Fisher Scientific | 21870092 | |
Sodium azide (NaN3) | Sigma-Aldrich | S2002 | |
Sodium chloride (NaCl) | Fisher Scientific | S271-500 | |
Stericup Quick Release-GP Sterile Vacuum Filtration System | Millipore Sigma | S2GPU10RE | |
Tuning solution | Fluidigm | 201072 | |
Washing solutionΒ | Fluidigm | 201070 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright Β© 2025 MyJoVE Corporation. All rights reserved