S'identifier

The histoneproteins in the nucleosomes are post-translationally modified (PTM) to increase or decrease access to DNA. The commonly observed PTMs are methylation, acetylation, phosphorylation, and ubiquitination of lysine amino acids in the histone H3 tail region. These histone modifications have specific meaning for the cell. Hence, they are called "histone code". The protein complex involved in histone modification is termed as "reader-writer" complex.

Writers

The writer is an enzyme that can cause specific histone modifications. The common writer enzymes are histone methyltransferases (HMT) and histone acetyltransferases (HATs). HMTs add a methyl group to histone tail, which increases the chromatin compaction, inhibits transcription, and helps to differentiate newly synthesized strands from the parental strand during DNA replication. HATs add an acetyl group to histone tail, which decreases the chromatin compaction and allows access to DNA.

Erasers

The PTMs to histones are reversible and can be removed by another group of enzymes called "erasers". Common erasers are histone deacetylase and histone demethylase. They remove the acetyl or methyl group from the histone and alter the chromatin compaction.

Barrier proteins

Reader-writer complexes mark the euchromatin and heterochromatin regions on a chromatin. Acetylation of histone tail lysine marks the euchromatin, whereas methylation marks the heterochromatin region. It is important to separate the gene-rich euchromatin from gene-poor heterochromatin, for optimal regulation of gene expression. On a long chromatin strand, series of euchromatin and heterochromatin are separated by barrier sequences. These sequences prevent the spread of histone modification by several ways. For example, barrier proteins can tether chromatin to nuclear pore and prevent the spread of heterochromatin.

The aberrant activity of writer-eraser enzymes is correlated with several human diseases, including Alzheimer's, Fragile X syndrome, and cancer. In Fragile X syndrome, gene FRM1 required for normal cognitive development is hypermethylated, which leads to transcriptional silencing of the gene.

Tags

Chromatin ModificationsReader EnzymesWriter EnzymesEraser EnzymesChromatin ChangesTranscriptional Regulatory ProteinSpecific DNA SequenceWriter EnzymeCore HistonesMarksNucleosomesMultiprotein ComplexReader EnzymeAdjacent NucleosomeCatalyzeRead And Write CyclesChromatin CondensationChromosomeBoundaryEuchromatinHeterochromatinBarrier Sequences

Du chapitre 5:

article

Now Playing

5.13 : Spreading of Chromatin Modifications

DNA and Chromosome Structure

8.1K Vues

article

5.1 : DNA Packaging

DNA and Chromosome Structure

29.9K Vues

article

5.2 : DNA as a Genetic Template

DNA and Chromosome Structure

21.2K Vues

article

5.3 : Organization of Genes

DNA and Chromosome Structure

11.8K Vues

article

5.4 : Chromosome Structure

DNA and Chromosome Structure

22.2K Vues

article

5.5 : Chromosome Replication

DNA and Chromosome Structure

8.5K Vues

article

5.6 : The Nucleosome

DNA and Chromosome Structure

15.6K Vues

article

5.7 : The Nucleosome Core Particle

DNA and Chromosome Structure

11.6K Vues

article

5.8 : Nucleosome Remodeling

DNA and Chromosome Structure

8.8K Vues

article

5.9 : Chromatin Packaging

DNA and Chromosome Structure

14.8K Vues

article

5.10 : Karyotyping

DNA and Chromosome Structure

10.0K Vues

article

5.11 : Position-effect Variegation

DNA and Chromosome Structure

6.2K Vues

article

5.12 : Histone Modification

DNA and Chromosome Structure

12.7K Vues

article

5.14 : Lampbrush Chromosomes

DNA and Chromosome Structure

7.8K Vues

article

5.15 : Polytene Chromosomes

DNA and Chromosome Structure

9.8K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.