S'identifier

Introduction

Alkylation of terminal alkynes with primary alkyl halides in the presence of a strong base like sodium amide is one of the common methods for the synthesis of longer carbon-chain alkynes. For example, treatment of 1-propyne with sodium amide followed by reaction with ethyl bromide yields 2-pentyne.

Figure1

The reaction takes place in two steps:

1. The first step is the deprotonation of the terminal alkyne by the strong base forming an acetylide ion.

Figure2

2. The second step is a nucleophilic substitution reaction in which the acetylide ion reacts with the alkyl halide to form a new C–C bond.

Figure3

Reaction Mechanism —SN2 pathway

Acetylide ions are strong bases and can also function as good nucleophiles. The substitution reaction follows an SN2 pathway where the nucleophilic acetylide ion attacks the electrophilic carbon of the primary alkyl halide from the backside.

Figure4

Since this is a concerted process, the nucleophilic attack and the departure of the leaving group takes place simultaneously to form the product with an inverted stereochemistry at the reaction center.

The reaction works best with unhindered alkyl halides like methyl halide and other primary halides. With secondary and tertiary alkyl halides, acetylide ions act as strong bases, in which case E2 elimination is the preferred pathway.

Application in organic synthesis

Alkylation of simple terminal alkynes is a useful method to extend the length of the carbon chain. Acetylene, a terminal alkyne, can be converted to a higher internal alkyne by repeated alkylation as shown below:

Figure5

Tags

AlkynesAlkylation ReactionPrimary Alkyl HalidesStrong BaseSodium AmideCarbon chain Alkynes1 propyneEthyl BromideDeprotonationAcetylide IonNucleophilic Substitution ReactionSN2 PathwayConcerted ProcessInverted StereochemistryUnhindered Alkyl HalidesMethyl HalidePrimary HalidesSecondary Alkyl HalidesTertiary Alkyl HalidesE2 EliminationOrganic Synthesis

Du chapitre 9:

article

Now Playing

9.4 : Preparation of Alkynes: Alkylation Reaction

Alkynes

9.5K Vues

article

9.1 : Structure and Physical Properties of Alkynes

Alkynes

9.7K Vues

article

9.2 : Nomenclature of Alkynes

Alkynes

17.3K Vues

article

9.3 : Acidity of 1-Alkynes

Alkynes

9.3K Vues

article

9.5 : Preparation of Alkynes: Dehydrohalogenation

Alkynes

15.3K Vues

article

9.6 : Electrophilic Addition to Alkynes: Halogenation

Alkynes

8.0K Vues

article

9.7 : Electrophilic Addition to Alkynes: Hydrohalogenation

Alkynes

9.7K Vues

article

9.8 : Alkynes to Aldehydes and Ketones: Acid-Catalyzed Hydration

Alkynes

8.0K Vues

article

9.9 : Alkynes to Aldehydes and Ketones: Hydroboration-Oxidation

Alkynes

17.5K Vues

article

9.10 : Alkynes to Carboxylic Acids: Oxidative Cleavage

Alkynes

4.7K Vues

article

9.11 : Reduction of Alkynes to cis-Alkenes: Catalytic Hydrogenation

Alkynes

7.5K Vues

article

9.12 : Reduction of Alkynes to trans-Alkenes: Sodium in Liquid Ammonia

Alkynes

9.0K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.