サインイン

The cells of most organisms—including plants and animals—obtain usable energy through aerobic respiration, the oxygen-requiring version of cellular respiration. Aerobic respiration consists of four major stages: glycolysis, pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation. The third major stage, the citric acid cycle, is also known as the Krebs cycle or tricarboxylic acid (TCA) cycle.

For every glucose molecule that undergoes cellular respiration, the citric acid cycle is carried out twice; this is because glycolysis (the first stage of aerobic respiration) produces two pyruvate molecules per glucose molecule. During pyruvate oxidation (the second stage of aerobic respiration), each pyruvate molecule is converted into one molecule of acetyl-CoA—the input into the citric acid cycle. Therefore, for every glucose molecule, two acetyl-CoA molecules are produced. Each of the two acetyl-CoA molecules goes once through the citric acid cycle.

The citric acid cycle begins with the fusion of acetyl-CoA and oxaloacetate to form citric acid. For each acetyl-CoA molecule, the products of the citric acid cycle are two carbon dioxide molecules, three NADH molecules, one FADH2 molecule, and one GTP/ATP molecule. Therefore, for every glucose molecule (which generates two acetyl-CoA molecules), the citric acid cycle yields four carbon dioxide molecules, six NADH molecules, two FADH2 molecules, and two GTP/ATP molecules. The citric acid cycle also regenerates oxaloacetate, the molecule that starts the cycle.

While the ATP yield of the citric acid cycle is modest, the generation of coenzymes NADH and FADH2 is critical for ATP production in the final stage of cellular respiration, oxidative phosphorylation. These coenzymes act as electron carriers and donate their electrons to the electron transport chain, ultimately driving the production of most of the ATP produced by cellular respiration.

タグ

Citric Acid CyclePyruvateMitochondriaAcetyl CoACarbon Dioxide CO2NADHATPFADH2Glucose MoleculeGlycolysisAerobic RespirationKrebs CycleTricarboxylic Acid TCA CyclePyruvate OxidationOxidative Phosphorylation

章から 8:

article

Now Playing

8.12 : Products of the Citric Acid Cycle

Cellular Respiration

97.3K 閲覧数

article

8.1 : What is Glycolysis?

Cellular Respiration

161.5K 閲覧数

article

8.2 : Energy-requiring Steps of Glycolysis

Cellular Respiration

162.0K 閲覧数

article

8.3 : Energy-releasing Steps of Glycolysis

Cellular Respiration

137.6K 閲覧数

article

8.4 : Pyruvate Oxidation

Cellular Respiration

156.6K 閲覧数

article

8.5 : The Citric Acid Cycle

Cellular Respiration

148.8K 閲覧数

article

8.6 : Electron Transport Chains

Cellular Respiration

94.9K 閲覧数

article

8.7 : Chemiosmosis

Cellular Respiration

95.2K 閲覧数

article

8.8 : Electron Carriers

Cellular Respiration

83.0K 閲覧数

article

8.9 : Fermentation

Cellular Respiration

111.9K 閲覧数

article

8.10 : Dietary Connections

Cellular Respiration

49.3K 閲覧数

article

8.11 : Introduction to Cellular Respiration

Cellular Respiration

170.8K 閲覧数

article

8.13 : Outcomes of Glycolysis

Cellular Respiration

97.8K 閲覧数

article

8.14 : ATP Yield

Cellular Respiration

67.8K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved