サインイン

An SN2 reaction of an alkyl halide is a single-step process in which bond formation between the nucleophile and the substrate and bond breaking between the substrate and the halide occurs simultaneously through a transition state without forming an intermediate.

When the nucleophile approaches the electrophilic carbon with its lone pairs, the halide acts as a leaving group and moves away with the electron-pair bonded to the carbon. Dotted partial bonds represent the bonds being formed or broken in the transition state to depict this mechanism, and the structure is enclosed within square brackets.

The transition state is highly unstable and reacts quickly to reach the product state, which is energetically more favored. The geometry of the transition state is trigonal bipyramidal with reduced bond angles. This results in steric crowding that leads to van der Waals repulsion and an increase in the activation energy to form the transition state. This ultimately influences the rate of the reaction. Hence, the higher the energy of activation, the slower is the rate of reaction.

Substitution on alkyl halides increases steric hindrance leading to less access for a nucleophilic attack. It also increases the crowding and the energy of the transition state. Thus, the order of reactivity for an alkyl halide undergoing SN2 reactions is as follows:

Methyl halide (highly reactive) > primary halide > secondary halide > β-substituted halide > tertiary halide (practically unreactive).

タグ

SN2 ReactionAlkyl HalideBond FormationNucleophileSubstrateLeaving GroupTransition StateIntermediateElectrophilic CarbonLone PairsDotted Partial BondsTrigonal BipyramidalSteric CrowdingVan Der Waals RepulsionActivation EnergyRate Of ReactionSubstitutionSteric HindranceReactivity

章から 6:

article

Now Playing

6.9 : SN2 Reaction: Transition State

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

9.1K 閲覧数

article

6.1 : Alkyl Halides

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

15.0K 閲覧数

article

6.2 : Nucleophilic Substitution Reactions

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

15.1K 閲覧数

article

6.3 : Nucleophiles

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

12.5K 閲覧数

article

6.4 : Electrophiles

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

9.9K 閲覧数

article

6.5 : Leaving Groups

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.1K 閲覧数

article

6.6 : Carbocations

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

10.6K 閲覧数

article

6.7 : SN2 Reaction: Kinetics

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.8K 閲覧数

article

6.8 : SN2 Reaction: Mechanism

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.3K 閲覧数

article

6.10 : SN2 Reaction: Stereochemistry

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

8.9K 閲覧数

article

6.11 : SN1 Reaction: Kinetics

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

7.4K 閲覧数

article

6.12 : SN1 Reaction: Mechanism

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

11.1K 閲覧数

article

6.13 : SN1 Reaction: Stereochemistry

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

8.0K 閲覧数

article

6.14 : Predicting Products: SN1 vs. SN2

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

13.0K 閲覧数

article

6.15 : Elimination Reactions

Nucleophilic Substitution and Elimination Reactions of Alkyl Halides

12.6K 閲覧数

See More

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved