Zaloguj się

The total change in the motion of an object is proportional to the total force vector acting on it and the time over which it acts. This product is called impulse, a vector quantity with the same direction as the total force acting on the object.

By writing Newton's second law of motion in terms of the momentum of an object and the external force acting on it, and simultaneously using the definition of the impulse vector, it can be shown that the total impulse on an object is equal to its net change in momentum. This mathematical relationship is called the impulse-momentum theorem, and it is true even if the force acting on the object varies with time.

For instance, in ice hockey, the puck experiences a significant impulse during a slap shot. A considerable force acts on the puck for less than a second, causing a change in the ball's velocity and hence its momentum. The difference in momentum is added to the initial momentum to calculate the final momentum. According to the theorem, the change in momentum of the puck is equal to the impulse experienced by the puck.

It is essential to note that an impulse does not cause momentum; instead, it causes a change in the momentum of an object.

This text is adapted from Openstax, University Physics Volume 1, Section 9.2: Impulse and Collisions.

Tagi
ImpulseMomentumNewton s Second LawForceTimeVectorChange In MomentumSlap ShotHockey PuckCollision

Z rozdziału 9:

article

Now Playing

9.4 : Impulse-Momentum Theorem

Linear Momentum, Impulse and Collisions

10.5K Wyświetleń

article

9.1 : Linear Momentum

Linear Momentum, Impulse and Collisions

13.0K Wyświetleń

article

9.2 : Force and Momentum

Linear Momentum, Impulse and Collisions

12.1K Wyświetleń

article

9.3 : Impulse

Linear Momentum, Impulse and Collisions

15.1K Wyświetleń

article

9.5 : Conservation of Momentum: Introduction

Linear Momentum, Impulse and Collisions

13.9K Wyświetleń

article

9.6 : Conservation of Momentum: Problem Solving

Linear Momentum, Impulse and Collisions

9.3K Wyświetleń

article

9.7 : Types Of Collisions - I

Linear Momentum, Impulse and Collisions

6.1K Wyświetleń

article

9.8 : Types of Collisions - II

Linear Momentum, Impulse and Collisions

6.4K Wyświetleń

article

9.9 : Elastic Collisions: Introduction

Linear Momentum, Impulse and Collisions

9.2K Wyświetleń

article

9.10 : Elastic Collisions: Case Study

Linear Momentum, Impulse and Collisions

10.1K Wyświetleń

article

9.11 : Collisions in Multiple Dimensions: Introduction

Linear Momentum, Impulse and Collisions

4.2K Wyświetleń

article

9.12 : Collisions in Multiple Dimensions: Problem Solving

Linear Momentum, Impulse and Collisions

3.3K Wyświetleń

article

9.13 : Center of Mass: Introduction

Linear Momentum, Impulse and Collisions

10.8K Wyświetleń

article

9.14 : Significance of Center of Mass

Linear Momentum, Impulse and Collisions

5.9K Wyświetleń

article

9.15 : Gravitational Potential Energy for Extended Objects

Linear Momentum, Impulse and Collisions

1.3K Wyświetleń

See More

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone