Войдите в систему

The ciliary structures were first seen in 1647 by Antonie Leeuwenhoek while observing the protozoans. In lower organisms, these appendages are responsible for cell movement, while in higher organisms, these appendages help in the movement of the extracellular fluids within the body cavities.

The cilia are made up of microtubules in a 9+2 arrangement, with nine microtubule doublet ring bundles, surrounding a pair of central singlet microtubule bundles. The doublet microtubule bundles are connected by nexin protein and axonemal dyneins. Radial spokes connect these outer doublet microtubules to the inner central pair. The coordinated movement of axonemal dyneins is responsible for the characteristic whip-like movement of the cilia. This characteristic ciliary movement is explained by the switch inhibition or switch-point mechanism proposed by Wais-Steider and Satir in 1979. The model suggests that during the ciliary motion, only half of the dyneins are active at a given time, while the other remains inactive. The axonemal dyneins on either side alternately switch between active and inactive forms to propel the ciliary motion. The sliding microtubules within the cilia require energy from ATP hydrolysis within the heavy chain domain of the axonemal dyneins.

Cilia in humans move rhythmically; they constantly remove waste materials such as dust, mucus, and bacteria through the airways, away from the lungs, and toward the mouth. Beating cilia on cells in the female fallopian tubes move egg cells from the ovary towards the uterus. A flagellum is an appendage larger than a cilium and specialized for cell locomotion. In humans, sperms are the only flagellated cell that must propel themselves towards female egg cells during fertilization.

Теги

Ciliary MotionMechanismCiliaCell MovementFlagellaMicrotubulesBeating PatternsCellular MechanicsLocomotionEukaryotic Cells

Из главы 5:

article

Now Playing

5.20 : Mechanism of Ciliary Motion

Cells and their Components

3.5K Просмотры

article

5.1 : What are Cells?

Cells and their Components

1.7K Просмотры

article

5.2 : Cell Diversity

Cells and their Components

2.8K Просмотры

article

5.3 : Cytoplasm

Cells and their Components

1.5K Просмотры

article

5.4 : The Nucleus

Cells and their Components

1.2K Просмотры

article

5.5 : The Nucleosome

Cells and their Components

1.2K Просмотры

article

5.6 : The Nucleosome Core Particle

Cells and their Components

798 Просмотры

article

5.7 : Chromatin Packaging

Cells and their Components

16.5K Просмотры

article

5.8 : The Endoplasmic Reticulum

Cells and their Components

1.4K Просмотры

article

5.9 : Golgi Apparatus

Cells and their Components

1.8K Просмотры

article

5.10 : Lysosomes

Cells and their Components

1.6K Просмотры

article

5.11 : Mitochondria

Cells and their Components

1.5K Просмотры

article

5.12 : Mitochondrial Membranes

Cells and their Components

928 Просмотры

article

5.13 : Peroxisomes

Cells and their Components

822 Просмотры

article

5.14 : Ribosomes

Cells and their Components

1.5K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены