Войдите в систему

Spherical coordinate systems are preferred over Cartesian, polar, or cylindrical coordinates for systems with spherical symmetry. For example, to describe the surface of a sphere, Cartesian coordinates require all three coordinates. On the other hand, the spherical coordinate system requires only one parameter: the sphere's radius. As a result, the complicated mathematical calculations become simple. Spherical coordinates are used in science and engineering applications like electric and gravitational fields. One of the other common applications of spherical coordinates is in the Earth's latitude and longitude system, which is used for navigational purposes.

Spherical coordinates belong to the family of curvilinear coordinates. These are the extension of polar coordinates and are used to describe a vector's position in three-dimensional space. A vector in a spherical coordinate system is defined using the radial, polar, and azimuthal scalar components. The radial component, which ranges from zero to infinity, specifies the vector's distance from its origin. The polar angle ranges from zero to π and measures the angle between the positive z-axis and the vector. The azimuthal angle, which ranges from zero to 2π, measures the angle between the x-axis and the orthogonal projection of the vector onto the xy-plane. A surface with a constant radius traces a sphere in a three-dimensional spherical coordinate system. On the other hand, a surface with a constant polar angle forms a half-cone, and a surface with a constant azimuthal angle forms a half-plane.

The transformation equations are used to convert a vector in spherical coordinates to Cartesian coordinates and cylindrical coordinates.

Теги

Spherical CoordinatesCartesian CoordinatesPolar CoordinatesCylindrical CoordinatesSpherical SymmetryRadiusVector PositionThree dimensional SpaceRadial ComponentPolar AngleAzimuthal AngleCurvilinear CoordinatesTransformation EquationsElectric FieldsGravitational FieldsLatitude And Longitude

Из главы 2:

article

Now Playing

2.5 : Spherical Coordinates

Vectors and Scalars

9.7K Просмотры

article

2.1 : Introduction to Scalars

Vectors and Scalars

13.8K Просмотры

article

2.2 : Introduction to Vectors

Vectors and Scalars

13.5K Просмотры

article

2.3 : Vector Components in the Cartesian Coordinate System

Vectors and Scalars

18.1K Просмотры

article

2.4 : Polar and Cylindrical Coordinates

Vectors and Scalars

14.1K Просмотры

article

2.6 : Vector Algebra: Graphical Method

Vectors and Scalars

11.4K Просмотры

article

2.7 : Vector Algebra: Method of Components

Vectors and Scalars

13.3K Просмотры

article

2.8 : Scalar Product (Dot Product)

Vectors and Scalars

8.0K Просмотры

article

2.9 : Vector Product (Cross Product)

Vectors and Scalars

9.2K Просмотры

article

2.10 : Scalar and Vector Triple Products

Vectors and Scalars

2.2K Просмотры

article

2.11 : Gradient and Del Operator

Vectors and Scalars

2.4K Просмотры

article

2.12 : Divergence and Curl

Vectors and Scalars

1.6K Просмотры

article

2.13 : Second Derivatives and Laplace Operator

Vectors and Scalars

1.1K Просмотры

article

2.14 : Line, Surface, and Volume Integrals

Vectors and Scalars

2.1K Просмотры

article

2.15 : Divergence and Stokes' Theorems

Vectors and Scalars

1.4K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены