Войдите в систему

The divergence and Stokes' theorems are a variation of Green's theorem in a higher dimension. They are also a generalization of the fundamental theorem of calculus. The divergence theorem and Stokes' theorem are in a way similar to each other; The divergence theorem relates to the dot product of a vector, while Stokes' theorem relates to the curl of a vector. Many applications in physics and engineering make use of the divergence and Stokes' theorems, enabling us to write numerous physical laws in both integral form and differential form. Each theorem has an important implication in fluid dynamics and electromagnetism. Through the divergence theorem, a difficult surface integral can be transformed easily into a volume integral, and vice versa. The rate of flow or discharge of any material across a solid surface in a vector field, like electric flow, wind flow, etc., can be determined using the divergence theorem. Similarly, Stokes' theorem can be used to transform a difficult surface integral into an easier line integral, and vice versa. The line integral in itself can be evaluated using a simple surface with a boundary.

Теги
Divergence TheoremStokes TheoremGreen s TheoremFundamental Theorem Of CalculusVector CalculusFluid DynamicsElectromagnetismIntegral FormDifferential FormSurface IntegralVolume IntegralLine IntegralVector Field

Из главы 2:

article

Now Playing

2.15 : Divergence and Stokes' Theorems

Vectors and Scalars

1.4K Просмотры

article

2.1 : Introduction to Scalars

Vectors and Scalars

13.8K Просмотры

article

2.2 : Introduction to Vectors

Vectors and Scalars

13.4K Просмотры

article

2.3 : Vector Components in the Cartesian Coordinate System

Vectors and Scalars

18.1K Просмотры

article

2.4 : Polar and Cylindrical Coordinates

Vectors and Scalars

14.1K Просмотры

article

2.5 : Spherical Coordinates

Vectors and Scalars

9.7K Просмотры

article

2.6 : Vector Algebra: Graphical Method

Vectors and Scalars

11.4K Просмотры

article

2.7 : Vector Algebra: Method of Components

Vectors and Scalars

13.3K Просмотры

article

2.8 : Scalar Product (Dot Product)

Vectors and Scalars

8.0K Просмотры

article

2.9 : Vector Product (Cross Product)

Vectors and Scalars

9.2K Просмотры

article

2.10 : Scalar and Vector Triple Products

Vectors and Scalars

2.2K Просмотры

article

2.11 : Gradient and Del Operator

Vectors and Scalars

2.4K Просмотры

article

2.12 : Divergence and Curl

Vectors and Scalars

1.6K Просмотры

article

2.13 : Second Derivatives and Laplace Operator

Vectors and Scalars

1.1K Просмотры

article

2.14 : Line, Surface, and Volume Integrals

Vectors and Scalars

2.1K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены