A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol provides a guide for waterproofing the skin with cyanoacrylate to prevent urine absorption by fur and skin. It includes instructions for applying the glue to the skin, implanting a bladder catheter, and electrodes for cystometry and external urethral sphincter electromyography recordings in awake mice.
Accurate measurement of urinary parameters in awake mice is crucial for understanding lower urinary tract (LUT) dysfunction, particularly in conditions like neurogenic bladder post-traumatic spinal cord injury (SCI). However, conducting cystometry recordings in mice presents notable challenges. When mice are in a prone and restricted position during recording sessions, urine tends to be absorbed by the fur and skin, leading to an underestimation of voided volume (VV). The goal of this study was to enhance the accuracy of cystometry and external urethral sphincter electromyography (EUS-EMG) recordings in awake mice. We developed a unique method utilizing cyanoacrylate adhesive to create a waterproof skin barrier around the urethral meatus and abdomen, preventing urine absorption and ensuring precise measurements. Results show that after applying the cyanoacrylate, the sum of VV and RV remained consistent with the infused saline volume, and there were no wet areas observed post-experiment, indicating successful prevention of urine absorption. Additionally, the method simultaneously stabilized the electrodes connected with the external urethral sphincter (EUS), ensured stable electromyography (EMG) signals, and minimized artifacts caused by the movement of the awakened mouse and manipulation of the experimenter. Methodological details, results, and implications are discussed, highlighting the importance of improving urodynamic techniques in preclinical research.
The storage and release of urine are dependent on the coordinated activity of the urinary bladder and external urethral sphincter (EUS). In some pathologies such as neurogenic bladder, both the bladder detrusor muscles and the sphincter can become dysfunctional, leading to significant bladder problems, especially after traumatic spinal cord injury(SCI)1.
Small rodents are commonly used as an experimental model to study the preclinical function of the lower urinary tract (LUT)2. Filling Cystometry (FC) and EUS electromyography (EUS-EMG) recording techniques can provide precise objective information depending on the choice of methods, accurate measurement, and interpretation of results3. Urodynamic tests are commonly used to evaluate the voiding volume (VV), voiding efficiency (VE), and bladder capacity4. VE measures how effectively the bladder can empty itself. It is calculated by dividing the voided volume by the sum of voided and residual volumes (VV+RV). On the other hand, bladder capacity is calculated by adding the VV (the amount of urine expelled during urination) to the RV (the amount of urine left in the bladder after urination)5. Therefore, the measurement of VV and RV are the keys to deducing other parameters.
Precisely measuring VV in mice during urodynamic tests presents various challenges. The urine of rodents, when physically restrained in a prone position, tends to be drawn downwards through the ventral abdominal wall due to the influence of gravity6. This phenomenon can lead to the absorption of urine by the abdominal fur and skin, which, in turn, underestimates the volume of urine excreted. Considering the small amount of urine produced by mouse, the impact of this absorbance on the accuracy of results is even more pronounced7. Furthermore, in models of SCI, VV is often lower than in normal mice due to the impact of the detrusor sphincter dyssynergia (DSD), which increases the risk of leak point pressures and urine absorption by the fur8. These factors have a significant impact on the results. Therefore, accurate measurement of VV and RV during terminal urodynamic studies in mice is crucial9. Currently, there is a lack of details in the methodologies provided in published literature about how to measure urine volume accurately in mouse models.
Cyanoacrylate adhesive is a type of glue that is commonly used in surgical procedures in human and animal models due to its quick and effective bonding properties10,11,12. This adhesive is particularly useful for closing wounds and lacerations, as it forms a strong and flexible bond when applied to the skin13. Moreover, it can be a great barrier against urine and wetness that may come into contact with fur and wounds11.
In this article, we have developed a novel and cost-effective technique that utilizes cyanoacrylate adhesive to achieve precise results in cystometry and EUS-EMG recordings in awake mice. This method will be beneficial in understanding the underlying causes of bladder dysfunction and devising more effective treatments for LUT disorders.
The animal study protocol was approved by the Institutional Animal Care and Use Committee of Indiana University School of Medicine. Approval Code: 21098MD/R/MSS/HZ Approval Date: 29 September 2021.
1. Preparation of catheter
2. Preparation of electrodes
3. Preparation of animal
4. Anesthesia during surgery
5. Surgical preparation
6. Surgical procedure
7. Cystometry and EUS-EMG recording preparation
Cystometry and EUS-EMG activity tracings were used to analyze the data. The continuous cystometry method involves the infusion of saline into the bladder and simultaneously measuring the pressure and volume changes in the bladder. To measure VV, 0.4 mL of saline was infused at a speed of 0.01 mL/min, and urine was collected over 40 min in a cap. The post-void residual (PVR) can be obtained by aspirating the saline through the catheter. In normal mice without glue, the sum of VV and RV was often less than 0.4 mL. After th...
This urodynamic technique describes an improved procedure for measuring urine volume and EUS- EMG signal in awake and restrained mice. The presence of fur around the urethral meatus and abdominal area can interfere with the accuracy of the VV measurement by absorbing urine. Although the fur surrounding the urethral meatus and abdomen had been carefully shaved before surgery, the remaining small furs within these areas and the skin still absorbed urine, usually leaving a wet area in the abdomen after recording. This issue...
The authors have nothing to disclose.
This study was supported by NIH-NINDS (R21NS130241), IND DEPT HLTH (55051, 74247, 74244), and US ARMY (HT94252310700).
Name | Company | Catalog Number | Comments |
Accelerator | BOB SMITH INDUSTRIES | BSI-152 | |
Cyanoacrylate | TED PELLA, Inc | 14478 | |
Disposable base mold | TED PELLA, Inc | 27147-4 | |
Infusion pump | Harvard Apparatus PHD ULTRA | 70-3006 | |
Isoflurane | Henry Schein Inc | 1182097 | |
PIN | World Precision Instruments | 5482 | |
Polyethylene Tubing 30 | Braintree Scientific Inc | PE30 | |
Sterile Weighing Boat | HEATHROW SCIENTIFIC | 797CK2 | |
Windaq/Lite | DATAQ INSTRUMENTS | 249022 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved