Oturum Aç

Nearly all the energy used by cells comes from the bonds that make up complex organic compounds. These organic compounds are broken down into simpler molecules, such as glucose. As a result, cells extract energy from glucose over many chemical reactions—a process called cellular respiration.

Cellular respiration can occur aerobically (with oxygen) or anaerobically (without oxygen). In the presence of oxygen, cellular respiration starts with glycolysis and continues with pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation.

Both aerobic and anaerobic cellular respiration start with glycolysis, which yields a net gain of two pyruvate molecules, two NADH molecules, and two ATP molecules (four ATPs produced with two ATPs used). In addition to these major products, glycolysis generates two water molecules and two hydrogen ions.

In cells that carry out anaerobic respiration, glycolysis is the primary source of ATP. These cells use fermentation to convert NADH from glycolysis back into NAD+, which is required to continue glycolysis. Glycolysis is also the primary source of ATP for mature mammalian red blood cells, which lack mitochondria. Cancer cells and stem cells also rely on aerobic glycolysis for the rapid generation of ATP.

Cells that use aerobic respiration continue to break down pyruvate after glycolysis via pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation. Pyruvate oxidation converts pyruvate from glycolysis into acetyl-CoA, the primary input for the citric acid cycle. NAD+ for continued glycolysis is replenished during oxidative phosphorylation, when NADH shuttles and donates electrons to the electron transport chain, becoming NAD+.

ATP is the main product of cellular respiration. Although oxidative phosphorylation produces most of the ATP generated by aerobic respiration, ATP is also produced during glycolysis and the citric acid cycle.

Etiketler

GlycolysisAnaerobic ProcessATPGlucosePyruvateWater MoleculesNADHHydrogen IonsNet ReactionADPInorganic Phosphate GroupsNAD PlusMajor Players Of GlycolysisCellular RespirationAerobic RespirationAnaerobic RespirationPyruvate OxidationCitric Acid CycleOxidative Phosphorylation

Bölümden 8:

article

Now Playing

8.13 : Outcomes of Glycolysis

Cellular Respiration

97.8K Görüntüleme Sayısı

article

8.1 : What is Glycolysis?

Cellular Respiration

161.5K Görüntüleme Sayısı

article

8.2 : Energy-requiring Steps of Glycolysis

Cellular Respiration

162.0K Görüntüleme Sayısı

article

8.3 : Energy-releasing Steps of Glycolysis

Cellular Respiration

137.6K Görüntüleme Sayısı

article

8.4 : Pyruvate Oxidation

Cellular Respiration

156.6K Görüntüleme Sayısı

article

8.5 : The Citric Acid Cycle

Cellular Respiration

148.8K Görüntüleme Sayısı

article

8.6 : Electron Transport Chains

Cellular Respiration

94.9K Görüntüleme Sayısı

article

8.7 : Chemiosmosis

Cellular Respiration

95.2K Görüntüleme Sayısı

article

8.8 : Electron Carriers

Cellular Respiration

83.0K Görüntüleme Sayısı

article

8.9 : Fermentation

Cellular Respiration

111.9K Görüntüleme Sayısı

article

8.10 : Dietary Connections

Cellular Respiration

49.3K Görüntüleme Sayısı

article

8.11 : Introduction to Cellular Respiration

Cellular Respiration

170.8K Görüntüleme Sayısı

article

8.12 : Products of the Citric Acid Cycle

Cellular Respiration

97.3K Görüntüleme Sayısı

article

8.14 : ATP Yield

Cellular Respiration

67.8K Görüntüleme Sayısı

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır