Oturum Aç

Other than maintaining genome stability via DNA repair, homologous recombination plays an important role in diversifying the genome. In fact, the recombination of sequences forms the molecular basis of genomic evolution. Random and non-random permutations of genomic sequences create a library of new amalgamated sequences. These newly formed genomes can determine the fitness and survival of cells. In bacteria, homologous and non-homologous types of recombination lead to the evolution of new genomes that ultimately decide the adaptability of bacteria to varying environmental conditions.

During meiosis, when a single cell divides twice to produce four cells containing half the original number of chromosomes, HR leads to crossovers between genes. This means that two regions of the same chromosome with nearly identical sequences break and then reconnect but to a different end piece. The minor differences between the DNA sequences of the homologous chromosomes do not change the function of the gene but can change the allele or the phenotype of the gene. For example, if a gene codes for a trait such as hair color, its allele determines the specific phenotype, i.e. whether the hair would be black, blonde or red. Humans contain two alleles of the same gene, at each gene location, one from each parent. Recombination such as gene conversion changes this distribution, altering the gene’s form or manifestation in the offspring.

Etiketler

Gene ConversionMeiosisSpo11 EnzymeDouble strand BreaksPhosphodiester BackboneMRX Protein ComplexHeteroduplex DNADisplacement LoopDNA PolymeraseD loopHolliday JunctionsResolvasesNon crossover ProductCrossover Product

Bölümden 7:

article

Now Playing

7.10 : Gene Conversion

DNA Repair and Recombination

9.5K Görüntüleme Sayısı

article

7.1 : Overview of DNA Repair

DNA Repair and Recombination

27.5K Görüntüleme Sayısı

article

7.2 : Base Excision Repair

DNA Repair and Recombination

21.4K Görüntüleme Sayısı

article

7.3 : Long-patch Base Excision Repair

DNA Repair and Recombination

6.9K Görüntüleme Sayısı

article

7.4 : Nucleotide Excision Repair

DNA Repair and Recombination

11.0K Görüntüleme Sayısı

article

7.5 : Translesion DNA Polymerases

DNA Repair and Recombination

9.6K Görüntüleme Sayısı

article

7.6 : Fixing Double-strand Breaks

DNA Repair and Recombination

11.8K Görüntüleme Sayısı

article

7.7 : DNA Damage can Stall the Cell Cycle

DNA Repair and Recombination

8.9K Görüntüleme Sayısı

article

7.8 : Homologous Recombination

DNA Repair and Recombination

49.5K Görüntüleme Sayısı

article

7.9 : Restarting Stalled Replication Forks

DNA Repair and Recombination

5.7K Görüntüleme Sayısı

article

7.11 : Overview of Transposition and Recombination

DNA Repair and Recombination

14.8K Görüntüleme Sayısı

article

7.12 : DNA-only Transposons

DNA Repair and Recombination

14.1K Görüntüleme Sayısı

article

7.13 : Retroviruses

DNA Repair and Recombination

11.8K Görüntüleme Sayısı

article

7.14 : LTR Retrotransposons

DNA Repair and Recombination

17.1K Görüntüleme Sayısı

article

7.15 : Non-LTR Retrotransposons

DNA Repair and Recombination

11.2K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır