Oturum Aç

When a paint brush is immersed in water, the bristles wave freely inside the water. When it is taken out, the bristles stick together. The reason behind this effect is surface tension.

Consider a beaker filled with liquid. The bulk molecules in the liquid experience equal attractive forces on all sides with the surrounding molecules. However, the surface molecules experience a net attractive force downward due to the bulk molecules. The surface of the liquid behaves like a stretched membrane, and it tends to minimize the surface area. This property of liquids is called surface tension. This is why liquid drops take a spherical shape, as a sphere has the minimum surface area for a given volume.

Like a needle, certain objects denser than water can float on water due to surface tension.

Consider a frame with a sliding arm dipped in soap solution. The soap bubble pulls the sliding arm inward due to surface tension. If the frame is kept in a vertical position, so that the sliding arm can move up and down, then a small weight can be hung on the sliding arm to keep the frame in equilibrium. This weight is equal to the force required to pull the arm back outward. Surface tension is expressed as force per unit length. Its unit is N/m or J/m2.

Surface molecules have higher potential energy than molecules inside the bulk of a liquid. This energy is called surface energy, which is the product of force and displacement.

Etiketler
Surface TensionSurface EnergyLiquid BehaviorAttractive ForcesSurface MoleculesMinimum Surface AreaSpherical ShapeFloating ObjectsEquilibriumForce Per Unit LengthPotential EnergySoap BubbleLiquid Drops

Bölümden 13:

article

Now Playing

13.12 : Surface Tension and Surface Energy

Fluid Mechanics

1.2K Görüntüleme Sayısı

article

13.1 : Characteristics of Fluids

Fluid Mechanics

3.4K Görüntüleme Sayısı

article

13.2 : Density

Fluid Mechanics

11.7K Görüntüleme Sayısı

article

13.3 : Pressure of Fluids

Fluid Mechanics

12.2K Görüntüleme Sayısı

article

13.4 : Variation of Atmospheric Pressure

Fluid Mechanics

1.8K Görüntüleme Sayısı

article

13.5 : Pascal's Law

Fluid Mechanics

7.7K Görüntüleme Sayısı

article

13.6 : Application of Pascal's Law

Fluid Mechanics

7.6K Görüntüleme Sayısı

article

13.7 : Pressure Gauges

Fluid Mechanics

2.7K Görüntüleme Sayısı

article

13.8 : Buoyancy

Fluid Mechanics

6.0K Görüntüleme Sayısı

article

13.9 : Archimedes' Principle

Fluid Mechanics

7.4K Görüntüleme Sayısı

article

13.10 : Density and Archimedes' Principle

Fluid Mechanics

6.4K Görüntüleme Sayısı

article

13.11 : Accelerating Fluids

Fluid Mechanics

947 Görüntüleme Sayısı

article

13.13 : Excess Pressure Inside a Drop and a Bubble

Fluid Mechanics

1.5K Görüntüleme Sayısı

article

13.14 : Contact Angle

Fluid Mechanics

11.3K Görüntüleme Sayısı

article

13.15 : Rise of Liquid in a Capillary Tube

Fluid Mechanics

1.1K Görüntüleme Sayısı

See More

JoVE Logo

Gizlilik

Kullanım Şartları

İlkeler

Araştırma

Eğitim

JoVE Hakkında

Telif Hakkı © 2020 MyJove Corporation. Tüm hakları saklıdır