登录

The term momentum is used in various ways in everyday language, most of which are consistent with the precise scientific definition. Generally, momentum implies a tendency to continue on course—to move in the same direction; we tend to speak of sports teams or politicians gaining and maintaining the momentum to win. Momentum is also associated with great mass and speed and is often considered when talking about collisions. For example, when rugby players collide and fall to the ground, their momentums have significant effects on any resulting collisions. Momentum, like energy, is important because it is conserved; only a few physical quantities are conserved in nature, and studying them yields fundamental insight into how nature works.

The scientific definition of linear momentum is consistent with most people’s intuitive understanding of momentum: a large, fast-moving object has greater momentum than a smaller, slower object. Linear momentum is defined as the product of a system’s mass multiplied by its velocity. It is directly proportional to the object’s mass and its velocity. Thus, the greater an object’s mass or greater its velocity, the greater its momentum. Momentum is a vector that has the same direction as the velocity.

This text is adapted from Openstax, College Physics, Section 8.0: Introduction to Linear Momentum and Collisions, Section 8.1: Linear Momentum and Force, and Openstax, University Physics Volume 1, Section 9.1: Linear Momentum.

Tags

Linear MomentumMassVelocityVectorConservation Of MomentumCollisions

来自章节 9:

article

Now Playing

9.1 : Linear Momentum

Linear Momentum, Impulse and Collisions

13.1K Views

article

9.2 : Force and Momentum

Linear Momentum, Impulse and Collisions

13.1K Views

article

9.3 : Impulse

Linear Momentum, Impulse and Collisions

16.2K Views

article

9.4 : Impulse-Momentum Theorem

Linear Momentum, Impulse and Collisions

10.5K Views

article

9.5 : Conservation of Momentum: Introduction

Linear Momentum, Impulse and Collisions

13.9K Views

article

9.6 : Conservation of Momentum: Problem Solving

Linear Momentum, Impulse and Collisions

9.4K Views

article

9.7 : Types Of Collisions - I

Linear Momentum, Impulse and Collisions

6.2K Views

article

9.8 : Types of Collisions - II

Linear Momentum, Impulse and Collisions

6.5K Views

article

9.9 : Elastic Collisions: Introduction

Linear Momentum, Impulse and Collisions

10.1K Views

article

9.10 : Elastic Collisions: Case Study

Linear Momentum, Impulse and Collisions

11.1K Views

article

9.11 : Collisions in Multiple Dimensions: Introduction

Linear Momentum, Impulse and Collisions

4.2K Views

article

9.12 : Collisions in Multiple Dimensions: Problem Solving

Linear Momentum, Impulse and Collisions

3.3K Views

article

9.13 : Center of Mass: Introduction

Linear Momentum, Impulse and Collisions

11.8K Views

article

9.14 : Significance of Center of Mass

Linear Momentum, Impulse and Collisions

5.9K Views

article

9.15 : Gravitational Potential Energy for Extended Objects

Linear Momentum, Impulse and Collisions

1.3K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。