登录

Benzaldehyde, like formaldehyde, lacks an α hydrogen and cannot enolize to form an enolate. Hence, the reaction of benzaldehyde with a ketone in the presence of an aqueous base forms a single crossed product. This reaction is referred to as Claisen–Schmidt condensation.

As the self-condensation of ketones is generally not favored in basic conditions, the self-condensed products do not form in the reaction between ketones and benzaldehyde. The general reaction of Claisen–Schmidt condensation is shown in Figure 1.

Figure1

Figure 1. The Claisen–Schmidt condensation reaction

The mechanism of the Claisen–Schmidt condensation reaction is similar to the other aldol reactions. The base deprotonates the α carbon of the ketone to form the ketone enolate. A ketone enolate then attacks the benzaldehyde to form an unsaturated carbonyl product as the final product instead of an aldol. This is due to the extended conjugation in the unsaturated carbonyl product stabilizing the molecule.

A similar reaction is observed with aromatic ketones and benzaldehyde in basic conditions.

Tags

KetonesNonenolizable Aromatic AldehydesClaisen Schmidt CondensationBenzaldehydeEnolate FormationSelf condensationAldol ReactionsUnsaturated Carbonyl ProductBasic ConditionsReaction Mechanism

来自章节 15:

article

Now Playing

15.23 : Ketones with Nonenolizable Aromatic Aldehydes: Claisen–Schmidt Condensation

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.5K Views

article

15.1 : Reactivity of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.2 : Reactivity of Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.3 : Types of Enols and Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.5 : Regioselective Formation of Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.6 : Stereochemical Effects of Enolization

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.7 : Acid-Catalyzed α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.8 : Base-Promoted α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.9 : Multiple Halogenation of Methyl Ketones: Haloform Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.10 : α-Halogenation of Carboxylic Acid Derivatives: Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.11 : α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : Reactions of α-Halocarbonyl Compounds: Nucleophilic Substitution

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.13 : Nitrosation of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.14 : C–C Bond Formation: Aldol Condensation Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Views

See More

JoVE Logo

政策

使用条款

隐私

科研

教育

关于 JoVE

版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。