A subscription to JoVE is required to view this content. Sign in or start your free trial.
The protocol describes an efficient and reliable method for quantifying the poly(A) length of the gene of interest from the Drosophila nervous system, which can be easily adapted to tissues or cell types from other species.
Polyadenylation is a crucial posttranscriptional modification that adds poly(A) tails to the 3' end of mRNA molecules. The length of the poly(A) tail is tightly regulated by cellular processes. Dysregulation of mRNA polyadenylation has been associated with abnormal gene expression and various diseases, including cancer, neurological disorders, and developmental abnormalities. Therefore, comprehending the dynamics of polyadenylation is vital for unraveling the complexities of mRNA processing and posttranscriptional gene regulation.
This paper presents a method for measuring poly(A) tail lengths in RNA samples isolated from Drosophila larval brains and Drosophila Schneider S2 cells. We employed the guanosine/inosine (G/I) tailing approach, which involves the enzymatic addition of G/I residues at the 3' end of mRNA using yeast poly(A) polymerase. This modification protects the RNA's 3' end from enzymatic degradation. The protected full-length poly(A) tails are then reverse-transcribed using a universal antisense primer. Subsequently, PCR amplification is performed using a gene-specific oligo that targets the gene of interest, along with a universal sequence oligo used for reverse transcription.
This generates PCR products encompassing the poly(A) tails of the gene of interest. Since polyadenylation is not a uniform modification and results in tails of varying lengths, the PCR products display a range of sizes, leading to a smear pattern on agarose gel. Finally, the PCR products are subjected to high-resolution capillary gel electrophoresis, followed by quantification using the sizes of the poly(A) PCR products and the gene-specific PCR product. This technique offers a straightforward and reliable tool for analyzing poly(A) tail lengths, enabling us to gain deeper insights into the intricate mechanisms governing mRNA regulation.
Most eukaryotic mRNAs are posttranscriptionally polyadenylated at their 3′ terminus in the nucleus by the addition of non-templated adenosines by canonical poly(A) polymerases. An intact poly(A) tail is pivotal throughout the lifecycle of mRNA, as it is essential for mRNA nuclear export1, facilitates interaction with poly(A)-binding proteins to enhance translational efficiency2, and imparts resistance against degradation3. In certain cases, the poly(A) tail can also undergo extension in the cytoplasm, facilitated by noncanonical poly(A) polymerases4. In the cytoplasm, poly (A) tail length dynamically changes and influences the life span of the mRNA molecule. Numerous polymerases and deadenylases are known for modulating tail length5,6,7. For example, the shortening of poly(A) tails correlates with translational repression, whereas the lengthening of poly(A) tails enhances translation8,9.
Accumulating genomic studies have demonstrated the fundamental significance of the poly(A) tail length across various facets of eukaryotic biology. This includes roles in germ-cell development, early embryonic development, neuronal synaptic plasticity for learning and memory, and the inflammatory response10. There have been numerous methods and assays developed for measuring poly(A) tail lengths. For example, the RNase H/oligo(dT) assay takes advantage of RNase H in the presence or absence of oligo(dT) to study poly(A) tail length11,12. Other methods to study poly(A) tail include the PCR amplification of 3' ends such as rapid amplification of cDNA ends poly(A) test (RACE-PAT)12,13 and the ligase-mediated poly(A) test (LM-PAT)14. Further modifications of the PAT assay include ePAT15 and sPAT16. Enzymatic G-tailing17,18 or G/I-tailing of the 3' end are other variations of the PAT assay. Further modification of these techniques includes the use of fluorescently labeled primers along with capillary gel electrophoresis for high-resolution analysis, referred to as the high-resolution poly(A) test (Hire-PAT)19. These PCR-driven assays allow fast and high-sensitivity poly(A) length quantitation.
With the development of next-generation sequencing, a high-throughput sequencing method, such as PAL-seq20 and TAIL-seq21, allows polyadenylation analyses at a transcriptome-wide scale. However, these methods provide only short sequencing reads of 36-51 nucleotides. Therefore, FLAM-Seq22 was developed for global tail length profiling of full-length mRNA and provides long reads. Nanopore technology23 provides PCR-independent, direct RNA, or direct cDNA sequencing for poly(A) tail length estimations. However, these high-throughput methods are not without limitations. They require large amounts of starting materials, are expensive, and time-consuming. Moreover, analyzing rare transcripts can be extremely challenging with high-throughput methods, and low-throughput PCR-based methods still provide an advantage when a small number of transcripts need to be analyzed, for pilot experiments, and validation of other methods.
We have recently demonstrated that Dscam1 mRNAs contain short poly(A) tails in Drosophila, which necessitates a non-canonical binding of the cytoplasmic poly(A)-binding protein on Dscam1 3'UTR using the G/I tailing method24. Here we provide a streamlined procedure for tissue preparation and quantifying poly(A) length of mRNAs from the Drosophila nervous system and Drosophila S2 cells.
1. Rearing and selecting Drosophila larvae
2. Brain isolation from Drosophila larvae (Figure 1)
Figure 1: Dissection of Drosophila larval brain from 3rd instar wandering stage. (A) Schematic drawings of Drosophila larva. (B-G) Larva dissection. Please click here to view a larger version of this figure.
3. Drosophila S2 Schneider cells
4. Total RNA extraction from Drosophila larvae brain and S2 cells
5. Preparation of RNA gel and electrophoresis
6. Poly(A) tail length measurement
Figure 2: RNA sample preparation and the poly(A)-tail assay. (A) The RNA gel images show total RNA from the Drosophila larva brain (left) and S2 cells (right) on a 1.5% formaldehyde agarose gel. Single-stranded RNA ladder sizes are shown in nucleotides on lane M. Note a major RNA banding at ~600 nt, which is from rRNA. (B) Schematics of poly(A)-tail assay. Abbreviation: G/I = guanosine/inosine. Please click here to view a larger version of this figure.
7. PCR product analysis by agarose gel electrophoresis
8. Capillary electrophoresis
9. Data analysis: poly(A) tail length measurement (Figure 3)
Figure 3: Poly(A) tail length and peak value measurement. Please click here to view a larger version of this figure.
10. Visualizing poly(A) tail length distribution
Here, we analyzed the poly(A) tail length of Dscam1 and GAPDH from Drosophila larval brains (Figure 4). Isolated RNAs were visualized on an agarose gel for quality control. A single RNA band at around 600 nucleotide size indicates intact RNA preparation (Figure 2A). RNAs were subjected to the G/I tailing and high-resolution capillary electrophoresis using an Agilent 2100 bioanalyzer. The gel images were exported using the Agilent 2100 ...
In this protocol, we describe the technique to dissect the Drosophila larval brain from wandering 3rd instar stage as well as the sample preparation from Drosophila S2 cells. Due to the labile nature of mRNAs, sample collection requires extra caution. For larval brain dissection, brains should not be damaged during isolation and should not be kept in solution for a prolonged duration. Keeping dissection time to 8-10 min for a round of dissection is essential. It may also be beneficial to supp...
The authors have no conflicts of interest to disclose.
This study was supported by the National Institute of Neurological Disorders and Stroke Grant R01NS116463 to J.K., and the Cellular and Molecular Imaging Core facility at the University of Nevada, Reno, which was supported by National Institutes of Health Grant P20GM103650 and used for research reported in this study.
Name | Company | Catalog Number | Comments |
3-(N-morpholino) propanesulfonic acid (MOPS) | Research Product Internation (RPI) | M92020 | |
Agilent High Sensitivity DNA Kit | Agilent Technologies | 5067-4626 | |
Agilent software 2100 expert free download demo | Agilent Technologies | https://www.agilent.com/en/product/automated-electrophoresis/bioanalyzer-systems/bioanalyzer-software/2100-expert-software-228259 | |
Apex 100 bp-Low DNA Ladder | Genesee Scientific | 19-109 | |
Bioanalyzer | Agilent 2100 Bioanalyzer G2938C | ||
Diethyl pyrocarbonate (DEPC) | Research Product Internation (RPI) | D43060 | |
DNA dye (Gel Loading Dye, Purple (6x) | New England biolabs | B7024S | |
Drosophila S2 cell line | Drosophila Genomics Resource Center stock #181 | ||
Drosophila Schneider’s Medium | Thermo Fisher Scientific | 21720024 | |
Ehidium bromide | Genesee scientific | 20-276 | |
Fetal bovine serum (FBS) | Sigma-Aldrich | F4135 | |
Forceps Dumont 5 | Fine Science tools | 11254-20 | |
Nuclease free water | Thermo Fisher Scientific | AM9932 | |
PBS 10x | Research Product Internation (RPI) | P32200 | |
Poly(A) Tail-Length Assay Kit | Thermo Fisher Scientific | 764551KT | |
RiboRuler Low Range RNA Ladder | Thermo Fisher Scientific | SM1833 | |
RNA Gel Loading Dye (2x) | Thermo Fisher Scientific | R0641 | |
RNA microprep kit | Zymoresearch | R1050 | |
RNA miniprep kit | Zymoresearch | R1055 | |
Scissors-Vannas Spring Scissors - 2.5 mm Cutting Edge | Fine Science tools | 15000-08 | |
TopVision Agarose Tablets | Thermo Fisher Scientific | R2802 | |
Tris-Acetate-EDTA (TAE) | Thermo Fisher Scientific | B49 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved