A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The present protocol describes an optimized 3D neural retina induction system that reduces the adhesion and fusion of retinal organoids with high repeatability and efficiency.
Retinopathy is one of the main causes of blindness worldwide. Investigating its pathogenesis is essential for the early diagnosis and timely treatment of retinopathy. Unfortunately, ethical barriers hinder the collection of evidence from humans. Recently, numerous studies have shown that human pluripotent stem cells (PSCs) can be differentiated into retinal organoids (ROs) using different induction protocols, which have enormous potential in retinopathy for disease modeling, drug screening, and stem cell-based therapies. This study describes an optimized induction protocol to generate neural retina (NR) that significantly reduces the probability of vesiculation and fusion, increasing the success rate of production until day 60. Based on the ability of PSCs to self-reorganize after dissociation, combined with certain complementary factors, this new method can specifically drive NR differentiation. Furthermore, the approach is uncomplicated, cost-effective, exhibits notable repeatability and efficiency, presents encouraging prospects for personalized models of retinal diseases, and supplies a plentiful cell reservoir for applications such as cell therapy, drug screening, and gene therapy testing.
The eye serves as the primary source of information among human sensory organs, with the retina being the principal visual sensory tissue in mammalian eyes1. Retinopathy stands as one of the primary global causes of eye diseases, leading to blindness2. Approximately 2.85 million people worldwide suffer from varying degrees of vision impairment due to retinopathy3. Consequently, investigating its pathogenesis is crucial for early diagnosis and timely treatment. Most studies on human retinopathy have primarily focused on animal models4,5,6. However, the human retina is a complex, multi-layered tissue comprising various cell types. Traditional two-dimensional (2D) cell culture and animal model systems typically fail to faithfully recapitulate the normal spatiotemporal development and drug metabolism of the native human retina7,8.
Recently, 3D culture techniques have evolved to generate tissue-like organs from pluripotent stem cells (PSCs)9,10. Retinal organoids (ROs) generated from human PSCs in a 3D suspension culture system not only contain seven retinal cell types but also exhibit a distinct stratified structure similar to the human retina in vivo11,12,13. Human PSC-derived ROs have gained popularity and widespread availability and are currently the best in vitro models for studying the development and disease of the human retina14,15. Over the past few decades, numerous researchers have demonstrated that human PSCs, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), can differentiate into ROs using various induction protocols. These advancements hold enormous potential in retinopathy for disease modeling, drug screening, and stem cell-based therapies16,17,18.
However, the generation of neural retina (NR) from human pluripotent stem cells (PSCs) is a complex, cumbersome, and time-consuming process. Furthermore, batch-to-batch variations in tissue organoids may lead to lower reproducibility of results19,20. Numerous intrinsic and extrinsic factors can influence the yield of retinal organoids (ROs), such as the number or species of starting cells and the use of transcription factors and small-molecule compounds21,22,23. Since the first human RO was generated by the Sasai laboratory11, multiple modifications have been proposed over the years to enhance the ease and effectiveness of the induction process13,21,24,25. Unfortunately, to date, no gold standard protocol has been established for generating ROs in all laboratories. Indeed, there is a certain degree of discrepancy in ROs resulting from different induction methods, as well as wide variation in the expression of retinal markers and the robustness of their structure22,26. These issues may severely complicate sample collection and the interpretation of study findings. Therefore, a more consolidated and robust differentiation protocol is needed to maximize efficiency with minimal heterogeneity of RO generation.
This study describes an optimized induction protocol based on a combination of Kuwahara et al.12 and Döpper et al.27 with detailed instructions. The new method significantly reduces the probability of organoid vesiculation and fusion, increasing the success rate of generating NR. This development holds great promise for disease modeling, drug screening, and cell therapy applications for retinal disorders.
This study was conducted in accordance with the Tenets of the Declaration of Helsinki and approved by the Institutional Ethics Committee of the Chinese PLA General Hospital. The WA09 (H9) ESC line was obtained from the WiCell Research Institute.
1. Culture media and reagent preparation
2. Culturing of H9-ESCs
3. Generation of human NRs
NOTE: Once the colonies achieve approximately 70% confluence, they can be directed towards differentiation into retinal organoids (ROs) using the procedural steps outlined in Figure 1.
4. Analysis of human NRs
A graphical overview of the modified protocol is shown in Figure 1. H9-ESCs were used to generate ROs when the cells were grown to a density of 70%-80%. Single-cell suspensions of H9-ESCs in 96 V-bottomed conical wells aggregated on day 1 and formed well-circumscribed round EBs by day 6. As the culture time increased, the volume of EBs gradually increased. On day 30, neuroepithelial-like structures were clearly formed and thickened during long-term NR differentiation.
Human ROs can spatially and temporally recapitulate the development of the fetal retina, and early ROs exhibit a high degree of similarity to the fetal retina at equivalent stages of development15. In terms of tissue morphology and molecular expression, human RO closely mirror the actual growth status of the retinal tissue, providing tremendous and unprecedented opportunities in the fields of disease modeling, drug screening, and regenerative medicine. Currently, several different methods have bee...
All authors declare that they have no conflicts of interest.
None.
Name | Company | Catalog Number | Comments |
0.01 M TPBS | Servicebio | G0002 | Washing slices |
4% Paraformaldehyde | Servicebio | G1101-500ML | Fix retinal organoids |
5 mL Pasteur pipette | NEST Biotechnology | 318516 | Pipette retinal organoids |
96 V-bottomed conical wells | Sumitomo Bakelit | MS-9096VZ | |
Adhesion Microscope Slides | CITOTEST | 188105 | Fix slices |
AggreWell medium | STEMCELL Technologies | 5893 | Medium |
Anhydrous ethanol | SINOPHARM | 10009218 | Dehydrate |
Anti-CHX10 | Santa Cruz | sc-365519 | Primary antibody |
Antifade Solution | ZSGB-BIO | ZLI-9556 | |
Anti-KI67 | Abcam | ab16667 | Primary antibody |
Anti-NESTIN | Sigma | N5413 | Primary antibody |
Anti-Neuronal Class III β-Tubulin(TUJ1) | Beyotime | AT809 | Primary antibody |
Anti-PAX6 | Abcam | ab195045 | Primary antibody |
Cell dissociation solution(CDS) | STEMCELL Technologies | 7922 | Cell dissociation |
CHIR99021 | Selleckchem | S2924 | GSK-3α/β inhibitor |
Cholesterol Lipid Concentrate | Gibco | 12531018 | 250× |
Citrate Antigen Retrieval Solution | Servicebio | G1202-250ML | 20×, pH 6.0 |
CS10 | STEMCELL Technologies | 1001061 | Cell Freezing Medium |
DAPI | Roche | 10236276001 | Nuclear counterstain |
Dimethyl sulfoxide(DMSO) | Sigma | D2650 | |
DMEM/F12 | Gibco | 11330032 | Medium |
DMEM/F12-GlutaMAX | Gibco | 10565018 | Medium |
Donkey anti-Mouse Alexa Fluor Plus 488 | Invitrogen | A32766 | Secondary Antibody |
Donkey anti-Rabbit Alexa Fluor 568 | Invitrogen | A10042 | Secondary Antibody |
Ethylene Diamine Tetraacetic Acid (EDTA) | Biosharp | BL518A | 0.5 M, pH 8.0, cell dissociation |
Extracellular matrix (ECM) | Corning | 354277 | Coating plates |
F12-Glutamax | Gibco | 31765035 | Medium |
Fetal Bovine Serum | Gibco | A5669701 | |
Flow-like tissue cell quantitative analyzer | TissueGnostics | TissueFAXS Plus | Scan sections |
IMDM-GlutaMAX | Gibco | 31980030 | Medium |
IWR1-endo | Selleckchem | S7086 | Wnt-inhibitor |
KnockOut Serum Replacement | Gibco | 10828028 | |
LDN-193189 2HCl | Selleckchem | S7507 | BMP-inhibitor |
Low-adhesion 24-well Plates | Corning | 3473 | |
Low-adhesion 6-well Plates | Corning | 3471 | |
Maintenance medium (MM) | STEMCELL Technologies | 85850 | Medium |
N2 supplement | Gibco | 17502048 | |
Normal Donkey Serum | Solarbio | SL050 | Blocking buffer |
Paraplast | Leica | 39601006 | Tissue embedding |
PBS pH 7.4 basic (1x) | Gibco | C10010500BT | Without Ca+,Mg+ |
Reconbinant human bone morphogenetic protein-4(rhBMP4) | R&D | 314-BP | Key protein factor |
Retinoic acid | Sigma | R2625 | Powder, keep out of light |
SB431542 | Selleckchem | S1067 | ALK5-inhibitor |
SU5402 | Selleckchem | S7667 | Tyrosine kinase inhibitor |
Super PAP Pen | ZSGB-BIO | ZLI-9305 | |
Taurine | Sigma | T0625-10G | |
Thioglycerol | Sigma | M1753 | |
Triton X-100 | Sigma | X100 | Permeabilization |
WA09 embryonic stem cell line | WiCell Research Institute | Cell line | |
Xylene | SINOPHARM | 10023418 | Dewaxing |
Y-27632 2HCL | Selleckchem | S1049 | ROCK-inhibitor |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved