A subscription to JoVE is required to view this content. Sign in or start your free trial.
This murine model combines a septic insult with hindlimb muscle disuse to recapitulate the bedridden feature of the typical septic patient. The model represents a significant departure from previous models to study muscle dysfunction in sepsis and is a reproducible approach to addressing therapeutic strategies to treat this condition.
Sepsis is a major cause of in-hospital deaths. Improvements in treatment result in a greater number of sepsis survivors. Approximately 75% of the survivors develop muscle weakness and atrophy, increasing the incidence of hospital readmissions and mortality. However, the available preclinical models of sepsis do not address skeletal muscle disuse, a key component for the development of sepsis-induced myopathy. Our objective in this protocol is to provide a step-by-step guideline for a mouse model that reproduces the clinical setting experienced by a bedridden septic patient. Male C57Bl/6 mice were used to develop this model. Mice underwent cecal ligation and puncture (CLP) to induce sepsis. Four days post-CLP, mice were subjected to hindlimb suspension (HLS) for seven days. Results were compared with sham-matched surgeries and/or animals with normal ambulation (NA). Muscles were dissected for in vitro muscle mechanics and morphological assessments. The model results in marked muscle atrophy and weakness, a similar phenotype observed in septic patients. The model represents a platform for testing potential therapeutic strategies for the mitigation of sepsis-induced myopathy.
Sepsis is a life-threatening condition due to an overactive immune response that adversely affects multiple organ systems, resulting in a major burden to health systems worldwide1. More recently, the in-hospital mortality linked to sepsis has decreased due to improved intensity care unit (ICU) management1,2. However, approximately 75% of the patients surviving the initial septic insult develop skeletal muscle atrophy (e.g., reductions in cross-sectional area) and weakness (e.g., reductions in force production capacity)3,4. This phenomenon has been characterized as sepsis-induced myopathy, highly linked to impaired physical activity and lack of independence to perform daily living tasks, leading to re-hospitalization and mortality within five years of the initial episode5.
Due to an aggressive and generalized infection, septic patients are exposed to prolonged periods of bed rest while recovering in the ICU. In this context, the skeletal muscle undergoes severe disuse, which likely exacerbates muscle atrophy and weakness3,4. Currently, no treatment has effectively addressed sepsis-induced myopathy. The available preclinical models designed to address the myopathy have used cecal ligation and puncture (CLP)6, cecal slurry7, or injection of purified lipopolysaccharide (LPS), which is a component of the cellular wall in gram-negative bacteria8. Although these models succeed in delivering infection, they do not properly reproduce the muscle disuse observed in septic hosts beyond a natural reduction in physical activity observed in septic animals9.
The main objective of this study is to provide a detailed description of how to properly execute the model of sepsis-induced myopathy with disuse in mice. We demonstrate the feasibility of combining CLP as a model of sepsis with hindlimb suspension (HLS) as a model of disuse to study sepsis-induced myopathy in mice3. Furthermore, representative results of muscle mechanics and typical morphological changes in response to the model are also provided.
The procedures have been reviewed and approved by the University of Florida IACUC (#202200000227). Male C57BL/6J mice, 17 weeks old, with a body mass ranging from 27 g to 34 g, were used for the present study. The experimental procedures and timeline outlined in this protocol are depicted in Figure 1. As indicated, the protocol spans a total of 11 days. Animals undergo survival surgery (CLP/Sham) on Day 0, followed by four days of fluid and analgesic support. On Day 4, animals begin HLS for a duration of 7 days. Terminal experiments are conducted on Day 11. The details of the reagents and the equipment used are listed in the Table of Materials.
1. Cecal ligation and puncture (CLP)
2. Hindlimb suspension (HLS)
3. Septic animal assessment
NOTE: Assessing the clinical condition of the animal is a key aspect of keeping track of severity post CLP/sham surgeries. Also, as required by IACUC, humane endpoints must be established for animal welfare. To address these concerns and provide standards for daily animal care, directions for performing animal assessment using the Modified Murine Sepsis Score (MMSS) were used14.
For the representative data shown in the results, male C57BL/6J mice, 17 weeks old, with a body mass ranging from 27 to 34 g, were used. The entire protocol takes eleven days to complete and consists of the surgery intervention (CLP or sham), saline and analgesic support (days 0 to 4), and the HLS disuse (days 4 to 11). Terminal experiments can be performed at any point over the suspension phase. To better understand the impact of the model on skeletal muscle function, the results are compiled from several experiments ac...
The current protocol provides technical guidelines for the implementation of a new preclinical model of sepsis-induced myopathy. All materials and important steps are described in detail for the reproduction of the model. This approach can reproduce the skeletal muscle dysfunction observed in septic patients, highlighting the role of disuse as a crucial component in worsening myopathy. Thus far, the majority of the preclinical studies addressing sepsis-induced myopathy did not include the disuse as an active component of...
The authors have no conflicts of interest to disclose.
This work was supported by NIH R21 AG072011 to OL.
Name | Company | Catalog Number | Comments |
4-0 Ethicon Coated Vicryl | Ethicon | D5792 | Absorbable suture used for closure of muscle layer and for ligation of the cecum. |
4-0 Ethilon Black 18" | Ethicon | 662G | Non absorbable suture for closure of the skin layer. |
BD PrecisionGlide Needle 26-28 G | BD | 305136 for 27g needle | Needle for puncturing the cecum. |
C57BL/6J mice | Jackson Laboratory | strain #000664 | |
Cotton Tipped Applicators | Puritan | S-18991 | Swabs for topical application of iodine. |
Cryostat | (Leica CM1950) | ||
Dynarex Povidone Iodine Prep Solution | Dynarex | 1415 | Topical Antiseptic Liquid for Skin and Mucosa |
Ethanol 200 Proof (100%) | Fisher Scientific | To make 70% ethanol for cleaning skin. | |
Hindlimb Suspension Cages | Custom Made | N/A | These custom made cages will be highlighted in the video recordings of the MS. |
Optixcare Eye Lube | Optixcare | Eye lube for protection during survival surgery. | |
Scalpel blades #11 | Fine Science | Blade used to make incisions on skin and muscle. | |
Skin-Trac | Zimmer | 736579 | Foam tape for fixing the tail to the suspension apparatus. |
SomnoSuite Low-Flow Digital Vaporizer | Kent Scientific Corporation | SS-01 | Vaporizer for Isoflurane Anesthesia |
Tissue bath apparatus | Aurora Scientific | Model 800A, Dual Mode Muscle Lever 300C |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved